
Configure and/or provide the certificates that should be used for each domain served by ESS.

The third section of the ESS installer GUI is the Domains section, here you will configure the certificates to use
for each previously specified domain name.

Certificate details configured via the UI in this section will be saved to your deployment.yml under each of the
components' k8s: ingress: configuration with the cert contents (if manually uploaded) being saved to a
secrets.yml in Base64.

This section covers all certificates to be used by the main components deployed by the installer, additional
certificates may be required when enabling specific integrations - you will specify integration specific certificates
on each respective integrations' page.

Config Example

deployment.yml

spec:
 components:
 elementWeb:
 k8s:
 ingress:
 tls: # Selecting `Certmanager Let's Encrypt`
 certmanager:
 issuer: letsencrypt
 mode: certmanager
 secretName: element-web
 integrator:
 k8s:
 ingress:
 tls: # Selecting `Certificate File`
 certificate:
 certFileSecretKey: integratorCertificate
 privateKeySecretKey: integratorPrivateKey
 mode: certfile
 secretName: integrator
 matrixAuthenticationService:

Certificates Section

Config: ☐

 k8s:
 ingress:
 fqdn: mas.kieranml.ems-support.element.dev
 tls:
 certmanager:
 issuer: letsencrypt
 mode: certmanager
 secretName: matrix-authentication-service
 synapse:
 k8s:
 ingress:
 tls: # Selecting `Existing TLS Certificates in the Cluster`
 mode: existing
 secretName: example
 secretName: synapse
 synapseAdmin:
 k8s:
 ingress:
 tls: # Selecting `Externally Managed`
 mode: external
 secretName: synapse-admin
 wellKnownDelegation:
 k8s:
 ingress:
 tls:
 mode: external
 secretName: well-known-delegation

secrets.yml

apiVersion: v1
kind: Secret
metadata:
 name: element-web
 namespace: element-onprem
data:
 elementWebCertificate: >-
 exampleBase64EncodedString
 elementWebPrivateKey: >-
 exampleBase64EncodedString

apiVersion: v1
kind: Secret
metadata:
 name: integrator
 namespace: element-onprem
data:
 certificate: >-
 exampleBase64EncodedString
 privateKey: >-
 exampleBase64EncodedString

apiVersion: v1
kind: Secret
metadata:
 name: matrix-authentication-service
 namespace: element-onprem
data:
 certificate: >-
 exampleBase64EncodedString
 privateKey: >-
 exampleBase64EncodedString

apiVersion: v1
kind: Secret
metadata:
 name: synapse
 namespace: element-onprem
data:
 synapseCertificate: >-
 exampleBase64EncodedString
 synapsePrivateKey: >-
 exampleBase64EncodedString

apiVersion: v1
kind: Secret
metadata:
 name: synapse-admin
 namespace: element-onprem

data:
 synapseAdminUICertificate: >-
 exampleBase64EncodedString
 synapseAdminUIPrivateKey: >-
 exampleBase64EncodedString

apiVersion: v1
kind: Secret
metadata:
 name: well-known-delegation
 namespace: element-onprem
data:
 wellKnownDelegationCertificate: >-
 exampleBase64EncodedString
 wellKnownDelegationPrivateKey: >-
 exampleBase64EncodedString

You will need to configure certificates for the following components:

Well-Known Delegation
Well-Known files are served on the base domain, i.e. https://example.com/.well-
known/matrix/client and https://example.com/.well-known/matrix/server .

Synapse
Please note, if you opt to turn on DNS SRV (via the Cluster Section), the Synapse certificate
MUST include the base domain as an additional name.

Element Web
Synapse Admin
Integrator
Matrix Authenication Service

For each component, you will be presented with 4 options on how to configure the certificate.

Certmanager Let's Encrypt

Config Example

spec:
 components:
 componentName: # `elementWeb`, `integrator`, `synapse`, `synapseAdmin`, `wellKnownDelegation`
 k8s:
 ingress:
 tls:
 certmanager:
 issuer: letsencrypt
 mode: certmanager
 secretName: component # Not used with 'Certmanager Let's Encrypt'

Select this to use Let's Encrypt to generate the certificates used, do not edit the Issuer field as no other options
are available at this time.

Certificate File

https://ems-docs.element.io/uploads/images/gallery/2024-04/image-1714491991843.png

Config Example

deployment.yml

spec:
 components:

https://ems-docs.element.io/uploads/images/gallery/2024-04/image-1714492004288.png

secrets.yml

 componentName: # `elementWeb`, `integrator`, `synapse`, `synapseAdmin`, `wellKnownDelegation`
 k8s:
 ingress:
 tls:
 mode: certfile
 certificate:
 certFileSecretKey: componentCertificate
 privateKeySecretKey: componentPrivateKey
 secretName: component

apiVersion: v1
kind: Secret
metadata:
 name: component
 namespace: element-onprem
data:
 componentCertificate: >-
 exampleBase64EncodedString
 componentPrivateKey: >-
 exampleBase64EncodedString

Select this option to be able to manually upload the certificates that should be used to serve the specified
domain. Make sure you certificate files are in the PEM encoded format and it is strongly advised to include the full
certificate chain within the file to reduce likelihood of certificate-based issues post deployment.

Existing TLS Certificates in the Cluster

Config Example

spec:
 components:
 componentName: # `elementWeb`, `integrator`, `synapse`, `synapseAdmin`, `wellKnownDelegation`
 k8s:
 ingress:
 tls:
 mode: existing
 secretName: example
 secretName: component # Not used with 'Existing TLS Certificates in the Cluster'

This option is most applicable to Kubernetes deployments, however can be used with Standalone. Select this
option when secrets containing the certificates are already present and managed within the cluster, provide the
secret name that contains the TLS certificates for ESS to use them.

Config Example

Externally Managed

https://ems-docs.element.io/uploads/images/gallery/2024-04/image-1714492016084.png
https://ems-docs.element.io/uploads/images/gallery/2024-04/image-1714492026549.png

spec:
 components:
 componentName: # `elementWeb`, `integrator`, `synapse`, `synapseAdmin`, `wellKnownDelegation`
 k8s:
 ingress:
 tls:
 mode: external
 secretName: component # Not used with 'Externally Managed'

Select this option is certificates are handled in front of the cluster, TLS will not be configured on the ingress for
each component.

If you already host a site on your base domain, i.e. example.com , then you should either ensure your web server
defers to the Well-Known Delegation component to serve the .well-known files or you should set Well-Known
Delegation to Externally Managed and manually serve those files.

This is because Matrix clients and servers need to be able to request https://example.com/.well-
known/matrix/client and https://example.com/.well-known/matrix/server respectively to work properly.

The web server hosting the base domain should either forward requests for /.well-known/matrix/client and
/.well-known/matrix/server to the Well-Known Delegation component for it to serve, or a copy of the .well-known

files will need to be added directly on the example.com web server.

If you don't already host a base domain example.com , then the Well-Known Delegation component hosts the
.well-known files and serves the base domain i.e. example.com

1. Run kubectl get cm/first-element-deployment-well-known -n element-onprem -o yaml on your ESS host,
it will output something similar to the below:

Config Example

apiVersion: v1
data:
 client: |-
 {
 "m.homeserver": {
 "base_url": "https://synapse.example.com"
 }

Well-Known Delegation

Getting the contents of the .well-known files

 }
 server: |-
 {
 "m.server": "synapse.example.com:443"
 }
 kind: ConfigMap
metadata:
 creationTimestamp: "2024-06-13T09:32:52Z"
 labels:
 app.kubernetes.io/component: matrix-delegation
 app.kubernetes.io/instance: first-element-deployment-well-known
 app.kubernetes.io/managed-by: element-operator
 app.kubernetes.io/name: well-known
 app.kubernetes.io/part-of: matrix-stack
 app.kubernetes.io/version: 1.24-alpine-slim
 k8s.element.io/crdhash: 9091d9610bf403eada3eb086ed2a64ab70cc90a8
 name: first-element-deployment-well-known
 namespace: element-onprem
 ownerReferences:
 - apiVersion: matrix.element.io/v1alpha1
 kind: WellKnownDelegation
 name: first-element-deployment
 uid: 24659493-cda0-40f0-b4db-bae7e15d8f3f
 resourceVersion: "3629"
 uid: 7b0082a9-6773-4a28-a2a9-588a4a7f7602

2. Copy the contents of the two supplied files (client and server) from the output into their own files:
Filename: client

{
 "m.homeserver": {
 "base_url": "https://synapse.example.com"
 }
}

Filename: server

{
"m.server": "synapse.example.com:443"
}

3. Configure your webserver such that each file is served correctly at, i.e for a base domain of
example.com :

https://example.com/.well-known/matrix/client
https://example.com/.well-known/matrix/server

Revision #4
Created 6 November 2024 10:22:12 by Kieran Mitchell Lane
Updated 8 November 2024 12:55:10 by Kieran Mitchell Lane

