
What do you need to get started, covering hardware, software and your environment?

Element Server Suite Download Page

To download the installer you require a Element Server Suite subscription tied with your EMS Account. If you are
already logged in, click the link above to access the download page, otherwise login and then click the Your
Account button found in the top-right of the page. Select Downloads under the On-Premise section.

Requirements and
Recommendations

Software

Element Enterprise Server

https://ems.element.io/on-premise/download
https://element.io/pricing
https://ems-docs.element.io/link/372#bkmrk-ems-account

It is highly recommended that you stay on the latest LTS version; by default, only LTS releases will be displayed.
However you can untick the Show LTS Only toggle to see our monthly releases.

https://ems-docs.element.io/uploads/images/gallery/2024-06/image-1718104050635.png
https://ems-docs.element.io/uploads/images/gallery/2024-06/image-1718104154385.png

For each release you will see download options for the installer, the airgapped package (if your subscription
allows) and Element Desktop MSIs:

Installer.
element-installer-enterprise-edition-YY.MM.00-gui.bin

Where YY is a year indicator, MM is the month indicator and 00 is the version.
Airgapped Package.
element-installer-enterprise-edition-airgapped-YY.MM.00-gui.tar.gz

Where YY is a year indicator, MM is the month indicator and 00 is the version.
Element Desktop MSI.
Element 1.11.66 ia32.msi & Element 1.11.66.msi

Once downloaded, copy the installer binary (and the airgapped package if needed) to the machine in which you

will be running the installer from. Remember to ensure you've followed the Requirements and Recommendations

page for your environment and specifically the Operating System specific Prerequisites for your intended
deployment method (Standalone or Kubernetes).

The installer binary requires a Linux OS to run, supported platforms include:

LTS ESS Version Supported Ubuntus
Supported Enterprise
Linux (RHEL, Rocky,

etc)

General Python
Version requirements

23.10 20.04, 22.04 8, 9 Python 3.8-3.10

24.04 20.04, 22.04 8, 9 Python 3.9-3.11

24.10 22.04, 24.04 8, 9 Python 3.10-3.12

Ubuntu.
Ubuntu Server 20.04
Ubuntu Server 22.04

Ubuntu Prerequisites

Standalone Deployments

Operating System

Please note that Ubuntu 24.04 LTS is only supported on ESS LTS 24.10 and later. For earlier versions,
while configuration can be generated, deployment will fail.

Element Server Suite 24.04 currently only supports up to Python 3.11

https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1714561143314.png
https://ems-docs.element.io/books/element-server-suite-documentation-lts-2404/page/requirements-and-recommendations
https://ems-docs.element.io/link/475#bkmrk-operating-system

During installation you should select docker as a package option and set up ssh.

The installer requires that it is run as a non-root user who has sudo permissions, make sure that
you have a user who can use sudo . You could create a user called element-demo that can use
sudo by using the following commands (run as root):

The installer also requires that your non-root user has a home directory in /home .

Kubernetes Deployments

The installer needs python3 , pip3 and python3-venv installed to run and uses your currently
active kubectl context. This can be determined with kubectl config current-context , make sure this
is the correct context as all subsequent operations will be performed under it.

More information on configuring this can be found in the upstream kubectl docs

Be sure to export K8S_AUTH_CONTEXT=kube_context_name for the Installer if you need to use a
context aside from your currently active one.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install git

useradd element-demo
gpasswd -a element-demo sudo

Other Debian based distros

While we only officially support the above Ubuntu versions, other Debian based distos are known to work. FOr
example Debian. Make sure you

Enterprise Linux. RHEL, CentOS Stream, etc.
Enterprise Linux 8
Enterprise Linux 9

Enterprise Linux Prerequisites

Standalone Deployments

During installation make sure to select "Container Management" in the "Additional Software"
section.

sudo yum update -y
sudo yum install python39-pip python39-devel make gcc git -y

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-context-and-configuration

On minimal installations, you may also need to install tar and python3-libsemanage

You should also follow the steps linked here to Install microk8s on RHEL, or included below, if you
run into Error: System does not fully support snapd: cannot mount squashfs image using "squashfs" :

1. Install the EPEL repository
RHEL9:

sudo dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-
9.noarch.rpm
sudo dnf upgrade

RHEL8:

sudo dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-
8.noarch.rpm
sudo dnf upgrade

2. Install Snap, enable main snap communication socket and enable classic snap support

sudo yum install snapd
sudo systemctl enable --now snapd.socket
sudo ln -s /var/lib/snapd/snap /snap

3. Reboot

On the update-alternatives command, if you see more than one option, select the option with a
command string of /usr/bin/python3.9 .

The installer requires that it is run as a non-root user who has sudo permissions, make sure that
you have a user who can use sudo . You could create a user called element-demo that can use
sudo by using the following commands (run as root):

The installer also requires that your non-root user has a home directory in /home .

Kubernetes Deployments

The installer needs python3 , pip3 and python3-venv installed to run and uses your currently
active kubectl context. This can be determined with kubectl config current-context , make sure this
is the correct context as all subsequent operations will be performed under it.

More information on configuring this can be found in the upstream kubectl docs

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm -y
sudo update-alternatives --config python3

useradd element-demo
gpasswd -a element-demo wheel

https://snapcraft.io/install/microk8s/rhel
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-context-and-configuration

Be sure to export K8S_AUTH_CONTEXT=kube_context_name for the Installer if you need to use a
context aside from your currently active one.

For installation in Standalone mode, i.e. onto the host itself, only the above OS's are supported, otherwise for an
installation into a Kubernetes environment, make sure you have a Kubernetes platform deployed that you have
access to from the host running the installer.

Network Requirements

Element Enterprise Server needs to bind and serve content over:

Port 80 TCP
Port 443 TCP
Port 8443 TCP (Installer GUI)

microk8s specifically will need to bind and serve content over:

Port 16443 TCP
Port 10250 TCP
Port 10255 TCP
Port 25000 TCP
Port 12379 TCP
Port 10257 TCP
Port 10259 TCP
Port 19001 TCP

For more information, see https://microk8s.io/docs/ports.

In a default Ubuntu installation, these ports are allowed through the firewall. You will need to ensure that
these ports are passed through your firewall.

For RHEL instances with firewalld enabled, the installer will take care of opening these ports for you.

Further, you need to make sure that your host is able to access the following hosts on the internet:

api.snapcraft.io
*.snapcraftcontent.com
gitlab.matrix.org
gitlab-registry.matrix.org
pypi.org
docker.io
*.docker.com
get.helm.sh
k8s.gcr.io
cloud.google.com
storage.googleapis.com
registry.k8s.io
fastly.net
GitHub.com

https://microk8s.io/docs/ports

In addition, you will also need to make sure that your host can access your distributions' package
repositories. As these hostnames can vary, it is beyond the scope of this documentation to enumerate them.

Regardless of if you pick the standalone server or Kubernetes deployment, you will need a base level of
hardware to support the application. The general guidance for server requirements is dependant on your
Federation settings:

Open Federation.
Element recommends a minimum of 8 vCPUs/CPUs and 32GB ram for the host(s) running synapse
pods.
Closed Federation.
Element recommends a minimum of 6 vCPUs/CPUs and 16GB ram for the host(s) running synapse
pods.

The installer binary requires support for the x86_64 architecture. Note that for Standalone deployments, hosts will
need 2 GiB of memory to run both the OS and microk8s and should have at least 50Gb free space in /var .

Please note that these values below are indicative and might vary a lot depending on your setup, the volume of
federation traffic, active usage, bridged use-cases, integrations enabled, etc. For each profile below:

CPU is the maximum cpu cores the Homeserver can request
Memory is the average memory the Homeserver will require

The installer comes with default installation profiles which configure workers depending on your setup.

Federation 1 - 500 Users 501 - 2500 Users 2501 - 10,000 Users

Closed
2 CPU

2000 MiB RAM
6 CPU

5650 MiB RAM
10 CPU

8150 MiB RAM

Limited
2 CPU

2000 MiB RAM
6 CPU

5650 MiB RAM
10 CPU

8150 MiB RAM

Open
5 CPU

4500 MiB RAM
9 CPU

8150 MiB RAM
15 CPU

11650 MiB RAM

Hardware

Component-Level Requirements

Synapse Homeserver

Synapse Postgres Server

Synapse postgres server will require the following resources :

Federation 1 - 500 Users 501 - 2500 Users 2501 - 10,000 Users

Closed
1 CPU

4 GiB RAM
2 CPU

12 GiB RAM
4 CPU

16 GiB RAM

Limited
2 CPU

6 GiB RAM
4 CPU

18 GiB RAM
8 CPU

28 GiB RAM

Open
3 CPU

8 GiB RAM
5 CPU

24 GiB RAM
10 CPU

32 GiB RAM

The Updater memory usage remains at 256Mi . At least 1 CPU should be provisioned for the operator and the
updater.

The Operator memory usage scales linearly with the number of integrations you deploy with ESS. It's memory
usage will remain low, but might spike up to 256Mi x Nb Integrations during deployment and configuration
changes.

The disk usage to expect after a year can be calculated using the following formula:

average media size × (average number of media uploaded ÷ day) × active users × 365 .

Media retention can be configured with the configuration option in Synapse/Config/Data Retention of the installer.

The disk usage to expect after a year can be calculated using the following formula:

If Federation is enabled, active users × 0.9GB .
If Federation is disabled or limited, active users × 0.6GB .

For each of the components you choose to deploy (excluding postgresql, groupsync and prometheus), you must
provide a hostname on your network that meets this criteria:

Fully resolvable to an IP address that is accessible from your clients.
Signed PEM encoded certificates for the hostname in a crt/key pair. Certificates should be signed by
an internet recognised authority, an internal to your company authority, or LetsEncrypt.

Operator & Updater

Synapse Media

Postgres DB size

Environment

It is possible to deploy Element Enterprise On-Premise with self-signed certificates and without proper DNS in
place, but this is not ideal as the mobile clients and federation do not work with self-signed certificates.

In addition to hostnames for each component, you will also need a hostname and PEM encoded certificate
key/cert pair for your base domain. If we were deploying a domain called example.com and wanted to deploy all
of the software, we would have the following hostnames in our environment that needed to meet the above
criteria:

Base Domain.
example.com
Synapse.
matrix.example.com
Element Web.
element.example.com
Integration Manager.
integrator.example.com
Admin Dashboard.
admin.example.com
AdminBot.
adminbot.example.com
AuditBot.
auditbot.example.com
Hookshot.
hookshot.example.com
Hydrogen.
hydrogen.example.com
Jitsi.
jitsi.example.com
Coturn.
coturn.example.com
Element Call.
call.example.com
SFU.
sfu.example.com
Grafana.
grafana.example.com
Telegram Bridge.
telegrambridge.example.com
Teams Bridge.
teamsbridge.example.com

Wildcard certificates do work with our application and it would be possible to have a certificate that validated
*.example.com and example.com for the above scenario. It is key to do both the base domain and the wildcard in
the same certificate in order for this to work.

Further, if you want to do voice or video across network boundaries (ie: between people not on the same local
network), you will need a TURN server. If you already have one, you do not have to set up coturn. If you do not
already have a TURN server, you will want to set up coturn (our installer can do this for you) and if your server is
behind NAT, you will need to have an external IP in order for coturn to work.

Before beginning the installation of a Kubernetes deployment, there are a few things that must be prepared to
ensure a successful deployment and functioning installation.

Standalone Environment Prerequisites

It is crucial that your storage provider supports fsync for data integrity.

/var : 50GB
/data/element-deployment : The default directory that Will contain your Synapse media. See the

Synapse Media section above to find an estimation of the expected size growth.

/data/postgres : The default directory that Will contain your Postgres database. See the Postgres DB

size section above to find an estimation of the expected size.

Check out the ESS Sizing Calculator for further guidance which you can tailor to your specific desired
configuration.

While above the supported Operating Systems should have this already, please note that microk8s requires the
kernel module nf_conntrack to be enabled.

If your environment requires proxy access to get to the internet, you will need to make the folllowing changes to
your operating system configuration to enable our installer to access the resources it needs over the internet.

Ubuntu Specific Steps

If your company's proxy is http://corporate.proxy:3128 , you would edit /etc/environment and add the
following lines:

The IP Ranges specified to NO_PROXY and no_proxy are specific to the microk8s cluster and prevent
microk8s traffic from going over the proxy.

HTTPS_PROXY=http://corporate.proxy:3128
HTTP_PROXY=http://corporate.proxy:3128
https_proxy=http://corporate.proxy:3128
http_proxy=http://corporate.proxy:3128
NO_PROXY=10.1.0.0/16,10.152.183.0/24,127.0.0.1,*.svc
no_proxy=10.1.0.0/16,10.152.183.0/24,127.0.0.1,*.svc

Server Minimum Requirements

Kernel Modules

if ! grep nf_conntrack /proc/modules; then
 echo "nf_conntrack" | sudo tee --append /etc/modules
 sudo modprobe nf_conntrack
fi

Network Proxy

https://ems-docs.element.io/link/475#bkmrk-synapse-media
https://ems-docs.element.io/link/475#bkmrk-postgres-db-size
https://ems-docs.element.io/link/475#bkmrk-postgres-db-size
https://ems-docs.element.io/books/element-server-suite-documentation-lts-2404/page/ess-sizing-calculator

Enterprise Linux Specific Steps

If your company's proxy is http://corporate.proxy:3128 , you would edit /etc/profile.d/http_proxy.sh and add
the following lines:

The IP Ranges specified to NO_PROXY and no_proxy are specific to the microk8s cluster and prevent
microk8s traffic from going over the proxy.

export HTTP_PROXY=http://corporate.proxy:3128
export HTTPS_PROXY=http://corporate.proxy:3128
export http_proxy=http://corporate.proxy:3128
export https_proxy=http://corporate.proxy:3128
export NO_PROXY=10.1.0.0/16,10.152.183.0/24,127.0.0.1,localhost,*.svc
export no_proxy=10.1.0.0/16,10.152.183.0/24,127.0.0.1,localhost,*.svc

Once your OS specific steps are complete, you will need to log out and back in for the environment variables to
be re-read after setting them. If you already have microk8s running, you will need to run the following to have
microk8s reload the new environment variables:

If you need to use an authenticated proxy, then the URL schema for both EL and Ubuntu is as follows:

So if your proxy is corporate.proxy and listens on port 3128 without SSL and requires a username of bob and a
password of inmye1em3nt then your url would be formatted:

For further help with proxies, we suggest that you contact your proxy administrator or operating system vendor.

The installation requires that you have a postgresql database; if you do not already have a database, then the
standalone installer will set up PostgreSQL on your behalf.

See Synapse Postgres Setup Docs for further details.

microk8s.stop
microk8s.start

protocol:user:password@host:port

http://bob:inmye1em3nt@corporate.proxy:3128

PostgreSQL

If you already have PostgreSQL, the installation requires that the database is setup with a locale of C
and use UTF8 encoding

https://element-hq.github.io/synapse/latest/postgres.html#set-up-database

Once setup, or if you have this already, make note of the database name, user, and password as you will need
these when configuring ESS via the installater GUI.

Before beginning the installation of a Kubernetes deployment, there are a few things that must be prepared to
ensure a successful deployment and functioning installation.

Before you can begin with the installation you must have a PostgreSQL database instance available. The installer
does not manage databases itself.

Look at the Synapse Postgres Setup Docs for further details as they relate to Synapse. If the locale / encoding
are incorrect, Synapse will fail to initialize the database and get stuck in a CrashLoopBackoff cycle.

Please make note of the database hostname, database name, user, and password as you will need these to
begin the installation. For testing and evaluation purposes, you can deploy PostgreSQL to k8s before you begin
the installation process:

Kubernetes PostgreSQL Quick Start Example

Requires Helm installed locally

If you do not have a database present, it is possible to deploy PostgreSQL to your Kubernetes cluster.

This is great for testing and can work great in a production environment, but only for those with a high degree
of comfort with PostgreSQL as well as the trade offs involved with k8s-managed databases.

There are many different ways to do this depending on your organization's preferences - as long as it can
create an instance / database with the required locale and encoding it will work just fine. For a simple non-

production deployment, we will demonstrate deployment of the bitnami/postgresql into your cluster using

Helm.

For testing and evaluation purposes only - Element cannot guarantee production readiness with these
sample configurations.

Kubernetes Environment Prerequisites

PostgreSQL

The database you use must be set to a locale of C and use UTF8 encoding

https://element-hq.github.io/synapse/latest/postgres.html#set-up-database
https://helm.sh/docs/intro/install/
https://github.com/bitnami/charts/tree/main/bitnami/postgresql
https://helm.sh/docs/intro/install/

You can add the bitnami repo with a few commands:

Next, you'll need to create a values.yaml file to configure your PostgreSQL instance. This example is

enough to get started, but please consult the chart's README and values.yaml for a list of full parameters
and options.

helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo update
helm search repo
bitnami/postgresql
 ~/Desktop
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/postgresql 12.5.7 15.3.0 PostgreSQL (Postgres) is an open source object-...
bitnami/postgresql-ha 11.7.5 15.3.0 This PostgreSQL cluster solution includes the P...

auth:
 # This is the necessary configuration you will need for the Installer, minus the hostname
 database: "synapse"

 username: "synapse"
 password: "PleaseChangeMe!"

primary:
 initdb:
 # This ensures that the initial database will be created with the proper collation settings
 args: "--lc-collate=C --lc-ctype=C"

 persistence:
 enabled: true
 # Set this value if you need to use a non-default StorageClass for your database's PVC
 # storageClass: ""
 size: 20Gi

 # Optional - resource requests / requirements
 # These are sufficient for a 10 - 20 user server
 resources:

https://github.com/bitnami/charts/tree/main/bitnami/postgresql#readme
https://github.com/bitnami/charts/blob/main/bitnami/postgresql/values.yaml

This example values.yaml file is enough to get you started for testing purposes, but things such as TLS
configuration, backups, HA and maintenance tasks are outside of the scope of the installer and this
document.

Next, pick a namespace to deploy it to - this can be the same as the Installer's target namespace if you
desire. For this example we'll use the postgresql namespace.

Then it's just a single Helm command to install:

Which should output something like this when it is successful:

This is telling us that postgresql.postgresql.svc.cluster.local will be our hostname for PostgreSQL
connections, which is the remaining bit of configuration required for the Installer in addition to the
database/username/password set in values.yaml . This will differ depending on what namespace you deploy
to, so be sure to check everything over.

 requests:
 cpu: 500m
 memory: 512Mi
 limits:
 memory: 2Gi

format:
helm install --create-namespace -n <namespace> <helm-release-name> <repo/chart> -f <values file> (-
f <additional values file>)

helm install --create-namespace -n postgresql postgresql bitnami/postgresql -f values.yaml

-- snip --

PostgreSQL can be accessed via port 5432 on the following DNS names from within your cluster:

 postgresql.postgresql.svc.cluster.local - Read/Write connection
-- snip --

If needed, this output can be re-displayed with helm get notes -n <namespace> <release name> , which for
this example would be helm get notes -n postgresql postgresql)

The installer does not manage cluster Ingress capabilities since this is typically a cluster-wide concern - You must
have this available prior to installation. Without a working Ingress Controller you will be unable to route traffic to
your services without manual configuration.

If you do not have an Ingress Controller deployed please see Kubernetes Installations - Quick Start - Deploying

ingress-nginx to Kubernetes for information on how to set up a bare-bones ingress-nginx installation to your
cluster.

Kubernetes Ingress (nginx) Quick Start Example

Requires Helm installed locally

Similar to the PostgreSQL quick start example, this requires Helm

The kubernetes/ingress-nginx chart is an easy way to get a cluster outfitted with Ingress capabilities.

In an environment where LoadBalancer services are handled transparently, such as in a simple test k3s
environment with svclb enabled there's a minimal amount of configuration.

This example values.yaml file will create an IngressClass named nginx that will be used by default for any
Ingress objects in the cluster.

For testing and evaluation purposes only - Element cannot guarantee production readiness with these
sample configurations.

controller:
 ingressClassResource:
 name: nginx
 default: true
 enabled: true

Kubernetes Ingress Controller

https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/kubernetes-installations-quick-start#Deploying%20ingress-nginx%20controller
https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/kubernetes-installations-quick-start#Deploying%20ingress-nginx%20controller
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://github.com/kubernetes/ingress-nginx/tree/main/charts/ingress-nginx

However, depending on your cloud provider / vendor (i.e. AWS ALB, Google Cloud Load Balancing etc) the
configuration for this can vary widely. There are several example configurations for many cloud providers in

the chart's README

You can see what your resulting HTTP / HTTPS IP address for this ingress controller by examining the
service it creates - for example, in my test environment I have an installed release of the ingress-nginx chart
called k3s under the ingress-nginx namespace, so I can run the following:

The value of EXTERNAL-IP will be the address that you'll need your DNS to point to (either locally via
/etc/hosts or LAN / WAN DNS configuration) to access your installer-provisioned services.

format:
kubectl get service -n <namespace> <release-name>-ingress-nginx-controller
$ kubectl get service -n ingress-nginx k3s-ingress-nginx-controller

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
k3s-ingress-nginx-controller LoadBalancer 10.43.254.210
192.168.1.129 80:30634/TCP,443:31500/TCP 79d

If you have an Ingress Controller deployed already and it is set to the default class for the cluster, you shouldn't
have to do anything else.

If you're unsure you can see which providers are available in your cluster with the following command:

And you can check to see whether an IngressClass is set to default using kubectl, for example:

Use an existing Ingress Controller

$ kubectl get IngressClass
NAME CONTROLLER PARAMETERS AGE
nginx k8s.io/ingress-nginx <none> 40d

$ kubectl describe IngressClass nginx
Name: nginx
Labels: app.kubernetes.io/component=controller
 app.kubernetes.io/instance=ingress-nginx
 app.kubernetes.io/managed-by=Helm
 app.kubernetes.io/name=ingress-nginx
 app.kubernetes.io/part-of=ingress-nginx

https://github.com/kubernetes/ingress-nginx/tree/main/charts/ingress-nginx#configuration

In this example cluster there is only an nginx IngressClass and it is already default, but depending on the cluster
you are deploying to this may be something you must manually set.

An airgapped environment is any environment in which the running hosts will not have access to the greater
Internet. As such these hosts will be unable to get access to the required software from Element and will also be
unable to share telemetry data back with Element.

If you are going to be installing into an airgapped environment, you will need a subscription including airgapped
access and to then download the airgapped dependencies element-enterprise-installer-airgapped-<version>-
gui.tar.gz file, which is a ~6GB archive that will need to be transferred to your airgapped environment.

Extract the archive, using tar -xzvf element-enterprise-installer-airgapped-<version>-gui.tar.gz so that you have
an airgapped directory. Once complete, your host will be successfully setup for airgapped and ready for when
you need to point the installer to that directory during installation.

For Kubernetes deployments, please note that once the image upload has been done, you will need to copy the
airgapped/images/images_digests.yml file to the same path on the machine which will be used to render or deploy

element services. Doing this, the new image digests will be used correctly in the kubernetes manifests used for
deployment.

 app.kubernetes.io/version=1.1.1
 argocd.argoproj.io/instance=ingress-nginx
 helm.sh/chart=ingress-nginx-4.0.17
Annotations: ingressclass.kubernetes.io/is-default-class: true
Controller: k8s.io/ingress-nginx
Events: <none>

Airgapped Environments

Your airgapped machine will still require access to airgapped linux repositories depending on your OS. If

using Red Hat Enterprise Linux, you will also need access to the EPEL Repository in your airgapped
environment.

Revision #68
Created 30 April 2024 14:00:58 by Kieran Mitchell Lane
Updated 3 December 2024 12:14:40 by twilight

https://docs.fedoraproject.org/en-US/epel/

