
Understand your ESS configuration files and how you can automate ESS deployment(s).

When you first run the installer binary, it will create a directory in your home folder, ~/.element-enterprise-server .
This is where you'll find everything the installer uses / generates as part of the installation including your
configuration, the installer itself and logs.

As you run through the GUI, it will output config files within ~/.element-enterprise-server/config that will be used
when you deploy. This is the best way to get started, before any automation effort, you should run through the
installer and get a working config that suits your requirements.

This will generate the config files, which can then be modified as needed, for your automation efforts, then in
order to understand how deployments could be automated, you should understand what config is stored where.

The Cluster YAML configuration file is populated with information used by all aspects of the installer. To start
you'll find apiVersion: , kind: and metadata which are used by the installer itself to identify the version of your
configuration file. In cases where you switch to a new version of the installer, it will then upgrade this config in-line
with the latest versions requirements.

Config Example

Automating ESS Deployment

The .element-enterprise-server Directory
Config examples included on this page may not up-to-date and are solely provided for demonstration
purposes. It is highly recommended to run the version of the installer you wish to install to generate and
configure config files that work with that version.

Once these config files have been created by the installer, you should refer to the up-to-date config
examples available in the installation documentation to understand how each config option can be
modified.

The cluster.yml Config File

apiVersion: ess.element.io/v1alpha1
kind: InstallerSettings
metadata:
 annotations:
 k8s.element.io/version: 2023-07.09-gui
 name: first-element-cluster

The configuration information is then stored in the spec: section, for instance you'll see; your Postgres in cluster
information; DNS Resolvers; EMS Token; etc. See the example below:

The Deployment YAML configuration file is populated with the bulk of the configuration for you're deployment. As
above, you'll find apiVersion: , kind: and metadata which are used by the installer itself to identify the version of
your configuration file. In cases where you switch to a new version of the installer, it will then upgrade this config
in-line with the latest versions requirements.

Config Example

apiVersion: matrix.element.io/v1alpha1
kind: ElementDeployment
metadata:

spec:
 connectivity:
 dockerhub: {}
 install:
 certManager:
 adminEmail: admin@example.com
 emsImageStore:
 password: examplesubscriptionpassword
 username: examplesubscriptionusername
 microk8s:
 dnsResolvers:
 - 8.8.8.8
 - 8.8.4.4
 postgresInCluster:
 hostPath: /data/postgres
 passwordsSeed: examplepasswordsseed

The deployment.yml Config File

 name: first-element-deployment
 namespace: element-onprem

The configuration is again found within the spec: section of this file, which itself has two main sections:

components: which contains the set configuration for each individual component i.e. Element Web or
Synapse
global: which contains configuration required by all components i.e. the root FQDN and Certificate

Authority information

First each component has a named section, such as elementWeb , integrator , synapseAdmin , or in this
example synapse :

Within each component, there are two sections to organise the configuration:

config: which is configuration of the component itself i.e. whether Synapse registration is Open /
Closed

Config Example

 config:
 acceptInvites: manual
 adminPasswordSecretKey: adminPassword
 externalAppservices:
 configMaps: []
 files: {}
 federation:
 certificateAutoritiesSecretKeys: []
 clientMinimumTlsVersion: '1.2'
 trustedKeyServers: []
 log:
 rootLevel: Info
 macaroonSecretKey: macaroon
 maxMauUsers: 250
 media:
 maxUploadSize: 100M
 volume:

components:

 synapse:

 size: 50Gi
 postgresql:
 passwordSecretKey: postgresPassword
 port: 5432
 sslMode: require
 registration: closed
 registrationSharedSecretSecretKey: registrationSharedSecret
 security:
 defaultRoomEncryption: not_set
 signingKeySecretKey: signingKey
 telemetry:
 enabled: true
 passwordSecretKey: telemetryPassword
 room: '#element-telemetry'
 urlPreview:
 config:
 acceptLanguage:
 - en
 workers: []

k8s: which is configuration of the pod itself in k8s i.e. CPU and Memory resource limits or FQDN

Config Example

 k8s:
 common:
 annotations: {}
 haproxy:
 workloads:
 annotations: {}
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 1
 memory: 100Mi
 securityContext:
 fsGroup: 10001

 runAsUser: 10001
 ingress:
 annotations: {}
 fqdn: synapse.example.com
 services: {}
 tls:
 certmanager:
 issuer: letsencrypt
 mode: certmanager
 redis:
 workloads:
 annotations: {}
 resources:
 limits:
 memory: 50Mi
 requests:
 cpu: 200m
 memory: 50Mi
 securityContext:
 fsGroup: 10002
 runAsUser: 10002
 synapse:
 common:
 annotations: {}
 monitoring:
 serviceMonitor:
 deploy: auto
 storage: {}
 workloads:
 annotations: {}
 resources:
 limits:
 memory: 4Gi
 requests:
 cpu: 1
 memory: 2Gi
 securityContext:
 fsGroup: 10991

 runAsUser: 10991
 secretName: synapse

The global: section works just like component: above, split into two sections config: and k8s: . It will set the
default settings for all new components, you can see an example below:

Config Example

 global:
 config:
 adminAllowIps:
 - 0.0.0.0/0
 - ::/0
 certificateAuthoritySecretKey: ca.pem
 domainName: example.com
 genericSharedSecretSecretKey: genericSharedSecret
 supportDnsFederationDelegation: false
 verifyTls: true
 k8s:
 common:
 annotations: {}
 ingresses:
 annotations: {}
 services:
 type: ClusterIP
 tls:
 certmanager:
 issuer: letsencrypt
 mode: certmanager
 monitoring:
 serviceMonitor:
 deploy: auto
 workloads:
 annotations: {}
 hostAliases: []

global:

 replicas: 2
 securityContext:
 forceUidGid: auto
 setSecComp: auto
 secretName: global

The Secrets YAML configuration file is populated, as expected, the secrets used for your configuration. It consists
of multiple entries, separated by lines of --- each following the below format:

Config Example

apiVersion: v1
data:
 genericSharedSecret: Q1BoVmNIaEIzWUR6VVZjZXpkMXhuQnNubHhLVVlM
kind: Secret
metadata:
 name: global
 namespace: element-onprem

The main section of interest for automation purposes, is the data: section, here you will find a dictionary of
secrets, in the above you can see a genericSharedSecret and it's value opposite.

The legacy directory stores configuration for specific components not yet updated to the new format within the
component: section of the deployment.yml . Work is steadily progressing on updating these legacy components

to the new format, however in the meantime, you will find a folder for each legacy component here.

Within each components folder, you will see a .yml file, which is where the configuration of that component is
stored. For instance, if you setup the IRC Bridge, it will create ~/.element-enterprise-server/config/legacy/ircbridge
with bridge.yml inside. You can use the Integrations and Add-Ons chapter of our documentation for guidance on
how these files are configured. Using the IRC Bridge example, you would have a bridge.yml like so:

The secrets.yml Config File

The legacy Directory

As integrations are upgraded to the new format this example (IRC) may become outdated, however the
process remains identical for any integrations still using the legacy format. Make sure to check via the
installer if the integration you are looking for is configured in this way.

https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/chapter/integrations-and-add-ons

Config Example

key_file: passkey.pem
bridged_irc_servers:
- postgres_fqdn: ircbridge-postgres
 postgres_user: ircbridge
 postgres_db: ircbridge
 postgres_password: postgres_password
 admins:
 - "@user:example.com"
 logging_level: debug
 enable_presence: true
 drop_matrix_messages_after_seconds: 0
 bot_username: "ircbridgebot"
 provisioning_room_limit: 50
 rmau_limit: 100
 users_prefix: "irc_"
 alias_prefix: "irc_"
 address: irc.example.com
 parameters:
 name: "Example IRC"
 port: 6697
 ssl: true
 botConfig:
 enabled: true
 nick: "MatrixBot"
 username: "matrixbot"
 password: "some_password"
 dynamicChannels:
 enabled: true
 mappings:
 "#welcome":
 roomIds: ["!MLdeIFVsWCgrPkcYkL:example.com"]
 ircClients:
 allowNickChanges: true

There is also another important folder in legacy . The certs directory, here you will need to add any CA.pem file
and certificates for the FQDN of any legacy components. As part of any automation, you will need to ensure
these files are correct per setup and named correctly, the certificates in this directory should be named using the

fully qualified domain name (.key and .crt).

Once you have a set of working configuration, you should make a backup of your ~/.element-enterprise-
server/config directory. Through whatever form of automation you choose, automate the modification of your
cluster.yml , deployment.yml , secrets.yml and any legacy *.ymls to adjust set values as needed.

For instance, perhaps you need 6 identical homeservers each with their own domain name, you would need to
edit the fqdn of each component and the domainName in deployment.yml . You'd then have 6 config
directories, each differing in domain, ready to be used by an installer binary.

On each of the 6 hosts, create the ~/.element-enterprise-server directory and copy that hosts specific config to
~/.element-enterprise-server/config . Copy the installer binary to the host, ensuring it's executable.

Once host system is setup, you can add unattended when running the binary to run the installer unattended. It
will pickup the configuration and start the deployment installation without needing to use the GUI to get it started.

Automating your deployment

Running the installer unattended

./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin unattended

Revision #14
Created 1 May 2024 16:43:40 by Kieran Mitchell Lane
Updated 6 November 2024 13:21:09 by Kieran Mitchell Lane

