
ESS makes use of Kubernetes for deployment so most guidiance on high-availability is tied directly with general
Kubernetes guidance on high availability.

Options for Highly Available Topology

Creating Highly Available Clusters with kubeadm

Set up a High Availability etcd Cluster with kubeadm

Production environment

It is strongly advised to make use of the Kubernetes documentation to ensure your environment is setup for high
availability, see links above. At a high-level, Kubernetes achieves high availability through:

Cluster Architecture.
Multiple Masters: In a highly available Kubernetes cluster, multiple master nodes (control plane
nodes) are deployed. These nodes run the critical components such as etcd , the API server,
scheduler, and controller-manager. By using multiple master nodes, the cluster can continue to
operate even if one or more master nodes fail.
Etcd Clustering: etcd is the key-value store used by Kubernetes to store all cluster data. It can
be configured as a cluster with multiple nodes to provide data redundancy and consistency. This
ensures that if one etcd instance fails, the data remains available from other instances.

Pod and Node Management.
Replication Controllers and ReplicaSets: Kubernetes uses replication controllers and
ReplicaSets to ensure that a specified number of pod replicas are running at any given time. If a
pod fails, the ReplicaSet automatically replaces it, ensuring continuous availability of the
application.
Deployments: Deployments provide declarative updates to applications, allowing rolling updates
and rollbacks. This ensures that application updates do not cause downtime and can be rolled
back if issues occur.
DaemonSets: DaemonSets ensure that a copy of a pod runs on all (or a subset of) nodes. This
is useful for deploying critical system services across the entire cluster.

Service Discovery and Load Balancing.
Services: Kubernetes Services provide a stable IP and DNS name for accessing a set of pods.
Services use built-in load balancing to distribute traffic among the pods, ensuring that traffic is
not sent to failed pods.

Guidance on High Availability

Kubernetes

Essential Links

High-Level Overview

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/setup-ha-etcd-with-kubeadm/
https://kubernetes.io/docs/setup/production-environment/

Ingress Controllers: Ingress controllers manage external access to the services in a cluster,
typically HTTP. They provide load balancing, SSL termination, and name-based virtual hosting,
enhancing the availability and reliability of web applications.

Node Health Management.
Node Monitoring and Self-Healing: Kubernetes continuously monitors the health of nodes and
pods. If a node fails, Kubernetes can automatically reschedule the pods from the failed node
onto healthy nodes. This self-healing capability ensures minimal disruption to the running
applications.
Pod Disruption Budgets (PDBs): PDBs allow administrators to define the minimum number of
pods that must be available during disruptions (such as during maintenance or upgrades),
ensuring application availability even during planned outages.

Persistent Storage.
Persistent Volumes and Claims: Kubernetes provides abstractions for managing persistent
storage. Persistent Volumes (PVs) and Persistent Volume Claims (PVCs) decouple storage from
the pod lifecycle, ensuring that data is preserved even if pods are rescheduled or nodes fail.
Storage Classes and Dynamic Provisioning: Storage classes allow administrators to define
different storage types (e.g., SSDs, network-attached storage) and enable dynamic provisioning
of storage resources, ensuring that applications always have access to the required storage.

Geographical Distribution.
Multi-Zone and Multi-Region Deployments: Kubernetes supports deploying clusters across
multiple availability zones and regions. This geographical distribution helps in maintaining high
availability even in the event of data center or regional failures.

Network Policies and Security.
Network Policies: These policies allow administrators to control the communication between
pods, enhancing security and ensuring that only authorized traffic reaches critical applications.
RBAC (Role-Based Access Control): RBAC restricts access to cluster resources based on
roles and permissions, reducing the risk of accidental or malicious disruptions to the cluster's
operations.

Automated Upgrades and Rollbacks.
Cluster Upgrade Tools: Tools like kubeadm and managed Kubernetes services (e.g., Google
Kubernetes Engine, Amazon EKS, Azure AKS) provide automated upgrade capabilities,
ensuring that clusters can be kept up-to-date with minimal downtime.
Automated Rollbacks: In the event of a failed update, Kubernetes can automatically roll back to
a previous stable state, ensuring that applications remain available.

As ESS is deployed into a Kubernetes cluster, if you are looking for high availability you should ensure your
environment is configured with that in mind. One important factor is to ensure you deploy using the Kubernetes
deployment option, whilst Standalone mode will deploy to a Kubernetes cluster, by definition it exists solely on a
single node so options for high availability will be limited.

PostgreSQL - High Availability, Load Balancing, and Replication

How does this tie into ESS

PostgreSQL

Essential links

https://www.postgresql.org/docs/current/high-availability.html

PostgreSQL - Different replication solutions

To ensure a smooth failover process for ESS, it is crucial to prepare a robust database topology. The following
list outline the necessary element to take into consideration:

Database replicas
Location: Deploy the database replicas in a separate data center from the primary database to
provide geographical redundancy.
Replication: Configure continuous replication from the primary database to the s econdary
database. This ensures that the secondary database has an up-to-date copy of all data.

Synchronization and Monitoring
Synchronization: Ensure that the secondary database is consistently synchronized with the
primary database. Use reliable replication technologies and monitor for any lag or
synchronization issues.
Monitoring Tools: Implement monitoring tools to keep track of the replication status and
performance metrics of both databases. Set up alerts for any discrepancies or failures in the
replication process.

Data Integrity and Consistency
Consistency Checks: Periodically perform consistency checks between the primary and
secondary databases to ensure data integrity. -Backups: Maintain regular backups of both the
primary and secondary databases. Store backups in a secure, redundant location to prevent
data loss.

Testing and Validation
Failover Testing: Conduct regular failover drills to test the transition from the primary to the
secondary database. Validate that the secondary database can handle the load and that the
failover process works seamlessly.
Performance Testing: Evaluate the performance of the secondary database under expected
load conditions to ensure it can maintain the required service levels.

By carefully preparing the database topology as described, you can ensure that the failover process for ESS is
efficient and reliable, minimizing downtime and maintaining data integrity.

As ESS relies on PostgreSQL for its database if you are looking for high availability you should ensure your
environment is configured with that in mind. The database replicas can be achieved the same way in both
Kubernetes and Standalone deployment, as the database is not managed by ESS.

This document outlines a high-level, semi-automatic, failover plan for ESS. The plan ensures continuity of service
by switching to a secondary data center (DC) in the event of a failure in the primary data center.

High-Level Overview

How does this tie into ESS

ESS failover plan

https://www.postgresql.org/docs/current/different-replication-solutions.html

Database Replica: A replica of the main database, located in a secondary data center, continuously
reading from the primary database.
Secondary ESS Deployment: An instance of the ESS deployment, configured in a secondary data
center.
Signing Keys Synchronization: The signing keys stored in ESS secrets need to be kept
synchronized between the primary and secondary data centers.
Media Repository: Media files are stored on a redundant S3 bucket accessible from both data
centers.

ElementDeployment Manifest:
Manifest points to addresses in DC1.
TLS Secrets managed by ACME.

TLS Secrets:
Replicated to DC2 and DC3.

Operator:
1 replica.

Updater:
1 replica.

PostgreSQL:
Primary database.

ElementDeployment Manifest:
Manifest points to addresses in DC2.
TLS Secrets pointing to existing secrets, replicated locally from DC1.

Operator:
0 replica, it prevents the deployment of the kubernetes workloads

Updater:
1 replica, the base element manifest are ready for the operator to deploy the workloads

PostgreSQL:
Hot-Standby, replicating from DC1.

ElementDeployment Manifest:
Manifest points to addresses in DC3.
TLS Secrets pointing to existing secrets, replicated locally from DC1.

Operator:

Prerequisites

ESS Architecture for failover capabilities based on 3
datacenters

DC1 (Primary)

DC2

DC3

0 replica, it prevents the deployment of the kubernetes workloads
Updater:

1 replica, the base element manifest are ready for the operator to deploy the workloads
PostgreSQL:

Hot-Standby, replicating from DC1.

When DC1 experiences downtime and needs to be failed over to DC2, follow these steps:

Disable DC1:
Firewall outbound traffic to prevent federation/outbound requests such as push notifications.
Scale down the Operator to 0 replicas and remove workloads from DC1.

Activate DC2:
Promote the PostgreSQL instance in DC2 to the primary role.
Set Operator Replicas:

Increase the Operator replicas to 1.
This starts the Synapse workloads in DC2.

Update the DNS to point the ingress to DC2.
Open the firewall if it was closed to ensure proper network access.

Synchronize DC3:
Ensure PostgreSQL Replication:

Make sure that the PostgreSQL in DC3 is properly replicating from the new primary in
DC2.
Adjust the PostgreSQL topology if necessary to ensure proper synchronization.

You should decline your own failover procedure based on this high-level failover overview. By doing so, you can
ensure that ESS continues to operate smoothly and with minimal downtime, maintaining service availability even
when the primary data center goes down.

Failover Process

Revision #11
Created 10 June 2024 09:23:39 by Kieran Mitchell Lane
Updated 6 November 2024 13:20:36 by Kieran Mitchell Lane

