Appendices

Preparing Element Server Suite PoC

How to run a Webserver on Standalone Deployments
Notifications, MDM & Push Gateway

Verifying ESS releases against Cosign

ESS CRDs support in ArgoCD

Synapse database troubleshooting

Auditbot troubleshooting

Preparing Element Server Suite PoC

Please reach out our Element Sales Team if you want to run a Proof of Concept for Element Server Suite.

Note This guide is for running Proof of Concepts. We don't aim to show every feature here, we want to get you up
and running most quickly. This guide is focusing on connected standalone installations currently. There are
scenarios currently not covered by this guide. Installing into airgapped / disconnected environments, or testing
our Cloud Based offering.

A Proof-of-Concept is done in preparation of a subscription sale with the goal of demonstrating the required
capabilities.

Create an account on element.io

Please create an account on element.io. We will enable this account as part of the PoC process and grant you
access to the Element Server Suite software packages.

Communication via matrix room

The account team will create a matrix room to improve communication and invite you. To do this We will need
your Matrix ID (MXID) to invite you.

If you don't already have a MXID, you can create one here by signing up. This will create an account on
matrix.org, you can authenticate via several identity providers.

When you have a MXID, we recommend adding it to your EMS Account via Your Account , Account . You should
then send this to the account team so they can add you to the room. You could use the Element Web Client that
you used to create the account or install one of the Element Mobile apps from the App or Playstore.

PoC preparation

Element Server Suite can be installed in a Kubernetes Cluster or as a standalone installation on top of an
Operating System (RHEL 8/9 or Ubuntu 20.04/22.04). Most Proof-of-Concept installations will select the
Standalone Installation on top of a VM which we recommend for speed and ease of operation.

https://element.io/contact-sales
https://ems.element.io/user/hosting
https://app.element.io/

Click here for an overview of the Element Server Suite. Here is the link detailing the single node installation.

Preparation of the VM and Ports

Please set up a VM with 8 vCPUs and 32GB RAM and 100 GB Storage. If this sounds like a lot of resources to
you, the requirements do in fact vary and could be scaled down later if required. Install Ubuntu 20.04 LTS or
RHELS8. Update the system to the latest available patches and create a user to be used for maintaining the

Element Server Suite. See our documentation for this step here.

You will need to be able to reach the VM on Ports 80, 443 and 8443.

DNS Names and Certificates

You need to select a base domain for the Server. This can differ from the base domain of the matrix IDs but is
often the same. Read more about this in the section on Matrix IDs and Well Known delegation below.

You have chosen eng.acme.com. The following DNS entries must be prepared and point to the external IP of the
VM.

This results in the following hostnames for you :

eng.acme.com (base domain - might already exist)
matrix.eng.acme.com (the synapse homeserver)
element.eng.acme.com (element web)
admin.eng.acme.com (admin dashboard)
integrator.eng.acme.com (integration manager)
hookshot.eng.acme.com (Our integrations)

Optional for Monitoring and Integrations :
e grafana.eng.acme.com (Our Grafana server)
Optional for Video Chat with Jitsi :

e jitsi.eng.acme.com (Our VolIP platform)
e coturn.eng.acme.com (Our TURN server)

Optional for Video Chat with Element Call :

e call.acme.com (Element Call)
e sfu.acme.com (Selective Forwarding Unit)

Opitonal for Element X support :
e sliding-sync.acme.com
Optional for the Admin / Audit functionality :

e roomadmin.eng.acme.com
e audit.eng.acme.com

https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/introduction-to-element-server-suite
https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/single-node-installations
https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/single-node-installations

We require certificates for all these hostnames including the base domain to enable SSL/TLS encryption. The
quick and easy way is to use the embedded letsencrypt. This is only available if you are in a connected

environment. You can provide and use your own certificates.

Matrix IDs & Well Know delegation

Matrix IDs have the following format :
@USER:SERVER

In our example case the matrix server is matrix.eng.acme.com. If a user Tom Maier has a username tmaier in
your LDAP, this would lead to an MXID @tmaier:matrix.eng.acme.com. This is often not desired as we like to
keep the MXIDs short. It is more elegant to drop the "matrix" host name from the MXIDs. Tom's MXID would look
like this @tmaier:eng.acme.com .

In order to be able to offer matrix IDs with the base domain, we recommend setting up a reverse proxy on
eng.acme.com, which forwards https://eng.acme.com/.well-known/matrix/ to the matrix/synapse server on
https://matrix.eng.acme.com/.well-known/matrix . Or you shorten the hostname part of your MXIDs even more to
acme.com, this would require you to put the reverse proxy onto acme.com.

The configuration on your Apache WebServer should be similar to this :

ProxyPass /.well-known/matrix/ https://matrix.eng.acme.com/.well-known/matrix/
ProxyPassReverse /.well-known/matrix/ https://matrix.eng.acme.com/.well-known/matrix/

ProxyPreserveHost On

More about well-known and MXIDs can be found in our Upstream Documentation here and here. Further
configurations can be made using the well-known mechanism. An example is documented here.

Authentication and Postgres DB

The quickest setup is using local authentication and users only. This is what we recommend in a Proof-of-
Concept situation. User accounts are created in the local Postgresql DB (recommended only up to 300 users)
through our Admin Ul or through API scripts for automation in this case. We support many mechanisms for
AUthentication like LDAP, SAML2 and OIDC. We recommend to configure these as a 2nd step only if required.

You have the option to use an internal or external Postgres DB. We do recommend to use the internal Postgres
DB for Proof-of-Concept installations. The internal Postgres DB is only available when you are opting for the
Standalone Installation on top of an Operating System. You will need an external Postgres DB when installing
into an existing Kubernetes cluster.

Checklist before starting the installation

Please prepare the above items before starting the installation. Make sure you have :

https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/single-node-installations#bkmrk-the-certificates-scr
https://matrix.org/docs/guides/understanding-synapse-hosting#how-our-matrixid-will-look-like
https://github.com/element-hq/synapse/blob/develop/docs/delegate.md
https://ems-docs.element.io/books/element-server-suite-documentation-lts-2310/page/setting-up-well-known-delegation

e created and communicated your MXID to the Element Sales Team

e registered an account on element.io

e created and prepared your vm / machine with enough resources

e created DNS entries

e decided on letsencrypt / created host certificates for your hostnames

e installed the reverse proxy on the webserver of your MXID URL e.g. eng.acme.com or acme.com

Don't hesitate to reach out to your Element Sales Team for support. We are here to guide you.

How to run a Webserver on
Standalone Deployments

This guide is does not come with support by Element. It is not part of the Element Server Suite (ESS) product.
Use at your own risk. Remember you are responsible of maintaining this software stack yourself.

Some config options require a web content to be served. For example :

e Changing Element Web appearance with custom background pictures.
e Providing a HomePage for display in Element Web.
¢ Providing a Guide PDF from your server in an airgapped environment.

One way to provide this content is to run a web server in the same Kubernetes Cluster as the Element Enterprise
Suite.

Please consider other options before installing and maintaining just another webserver for this.
Consider to use an existing web server 1st.

The following guide describes the steps to setup the Bitnami Apache helm chart in the Standalone Microk8s
cluster setup by Element Server Suite..

You need:

a DNS entry pages.BASEDOMAIN.

a Certificate (private key + certificate) for pages.BASEDOMAIN
an installed standalone Element Server Suite setup

access to the server on the command line

You get:

e a web server that runs in the mircok8s cluster
e a directory /var/www/apache-content to place and modify web content like homepage, backgrounds
and guides.

You can deploy a Webserver to the same Kubernetes cluster that Element Server Suite is using. This guide is
applicable to the Single Node deployment of Element Server Suite but can be used for guidance on how to host a
webserver in other Kubernetes Clusters as well.

You can use any webserver that you like, in this example we will user the Bitnami Apache chart.

We need helm version 3. You can follow this Guide or ask microk8s to install helm3.

https://helm.sh/docs/intro/install/

Enabling Helm3 with microk8s

$ microk8s enable helm3
Infer repository core for addon helm3
Enabling Helm 3
Fetching helm version v3.8.0.
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 12.9M 100129M 0O 0 17.4M 0 -—-i--i-- --i--i-- --i--i-- 17.4M

Helm 3 is enabled

Let's check if it is working
$ microk8s.helm3 version

version.BuildInfo{Version:"v3.8.0", GitCommit:"d14138609b01886f544b2025f5000351c9eb092e",
GitTreeState:"clean", GoVersion:"gol.17.5"}

Create and Alias for helm

echo alias helm=microk8s.helm3 >> ~/.bashrc

source ~/.bashrc

Enable the Bitnami Helm Chart repository

Add the bithami repository

helm repo add bitnami https://charts.bitnami.com/bitnami

Update the repo information

helm repo update

Prepare the Web-Server Content

Create a directory to supply content :

sudo mkdir /var/www/apache-content

Put your content e.g. a homepage into the apache-content directory.

cp /tmp/background.jpg /apache-content/

cp /tmp/home.html ~element/apache-content/

There are multiple ways to provide this content to the apache pod. The bitnami helm chart user ConfigMaps,
Physical Volumes or a Git Repository.

ConfigMaps are a good choice for smaller amounts of data. There is a hard limit of 1MiB on ConfigMaps. So if all
your data is not more that 1MiB, the config map is a good choice for you.

Physical Volumes are a good choice for larger amounts of data. There are several choices for backing storage
available. In the context of the standalone deployments of ESS a Physical Hostpath is the most practical.
HostPath is not a good solution for mutli node k8s clusters, unless you pin a pod to a certain node. Pinning the
pod to a single node would put the workload at risk, should that node go down.

Git Repository is a favourite as it versions the content and you track and revert to earlier states easily. The
bitnami apache helm chart is built in a way that updates in regular intervals to your latest changes.

We are selecting the Physical Volume option to serve content in this case. Our instance of Microk8s comes with
the Hostpath storage addon enabled.

Define the physical volume:

cat <<EOF>pv-volume.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: apache-content-pv
labels:
type: local
spec:
storageClassName: microk8s-hostpath
persistentVolumeReclaimPolicy: Retain
capacity:
storage: 100Mi
accessModes:
- ReadWriteOnce
hostPath:
path: "/var/www/apache-content"

EOF

Apply to the cluster

https://raw.githubusercontent.com/LutzLange/homepage/main/home.html

kubectl apply -f pv-volume.yaml

Next we need a Physical Volume Claim:

cat <<EOF>pv-claim.yaml

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
name: apache-content-pvc

spec:
volumeName: apache-content-pv
storageClassName: microk8s-hostpath
accessModes: [ReadWriteOnce]
resources: { requests: { storage: 100Mi } }

EOF

Apply to the cluster to create the pvc

kubectl apply -f pv-claim.yaml

Configure the Helm Chart

We need to add configurations to adjust the apache deployment to our needs. The K8s service should be
switched to ClusterlP. The Single Node deployment includes an Ingress configuration through nginx that we can
use to route traffic to this webserver. The name of the ingressClass is "public". We will need to provide a
hostname. This name needs to be resolvable through DNS. This could be done through the wildcard entry for

* $BASEDOMAIN that you might already have. You will need a certificate and certificate private key to secure this
connection through TLS.

The full list of configuration options of this chart is explained in the bitnami repository here

Create a file called apache-values.yml in the home directory of your element user directory.

Remember to replace BASEDOMAIN with the correct value for your deployment.

cat <<EOF>apache-values.yaml
service:

type: ClusterlP
ingress:

enabled: true

https://github.com/bitnami/charts/blob/main/bitnami/apache/README.md#deploying-a-custom-web-application.

ingressClassName: "public"

hostname: pages.BASEDOMAIN
htdocsPVC: apache-content-pvc
EOF

Deploy the Apache Helm Chart

Now we are ready to deploy the apache helm chart

helm install myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Manage the deployment

List the deployed helm charts:

$ helm list
NAME ONAMESPACE[REVISIONQUPDATED [OSTATUS [CHART JAPP VERSION
myhomepage[ldefault [J1 [2023-09-06 14:46:33.352124975 +0000 UTC[deployed[Japache-10.1.0[2.4.57

Get more details:

$ helm status myhomepage
NAME: myhomepage

LAST DEPLOYED: Wed Sep 6 14:46:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1

TEST SUITE: None

NOTES:

CHART NAME: apache
CHART VERSION: 10.1.0
APP VERSION: 2.4.57

** Please be patient while the chart is being deployed **

1. Get the Apache URL by running:

You should be able to access your new Apache installation through:

- http://pages.lutz-gui.sales-demos.element.io

If you need to update the deployment, modify the required apache-values.yaml and run :

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

If you don't want the deployment any more, you can remove it.

helm uninstall myhomepage

Secure the deployment with certificates

If you are in a connected environment, you can rely on cert-manager to create certificates and secrets for you.

Cert-manager with letsencrypt

If you have cert-manager enabled. You will just need to add the right annotations to the ingress of your
deployment. Modify you apache-values.yaml and add these lines to the ingress block :

tls: true
annotations:
cert-manager.io/cluster-issuer: letsencrypt

kubernetes.io/ingress.class: public

You will need to upgrade your deployment to reflect these changes:

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Custom Certificates

There are situations in which you want custom certificates instead. These can be used by modifying your apache-
values.yaml. Add the following lines to the ingress block in the apache-values.yaml. Take care to get the
indentation right. Replace the ... with your data.

tls: true
extraTls:

- hosts:

- pages.lutz-gui.sales-demos.element.io

secretName: "pages.lutz-gui.sales-demos.element.io-tls"
secrets:

- name: pages.lutz-gui.sales-demos.element.io-tls

key: |-

You will need to upgrade your deployment to reflect these changes:

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Tips and Tricks

You can make your life easier by using bash completing and an alias for kubectl. You will need to have the bash-
completion package installed as a prerequisite.

For all users on the system:

kubectl completion bash | sudo tee /etc/bash_completion.d/kubectl > /dev/null

Set an aias for kubectl for your user:

echo 'alias k=kubectl' >>~/.bashrc

Enable auto-completion for your alias

echo 'complete -o default -F __start_kubectl k' >>~/.bashrc

After reloading your Shell, you can now enjoy auto completion for your k (kubectl) commands.

Notifications, MDM & Push Gateway

The stock Android and iOS Apps will use an Element owned Push Gateway to send Notification via the Apple or
Google Natifiction Services.

The URL of our push gateway is https://matrix.org/_matrix/push/vl/notify

The apps will on startup register with the Google or Apple Notification Services (APNs) and request a
push_notification_client_identifier. If notifications need sending, the homeserver will use the configured Push
Gateway to sent natification through the APNs.

What is a Notification?

A notification will not contain sensitive content. This is what notificatons actually look like :

v 5 elements
v 0 : 2 elements
v key : AnyHashable("unread_count")
- value : "unread_count"
-value: 1
v1:2 elements
v key : AnyHashable("pusher_notification_client_identifier")
- value : "pusher_notification_client_identifier"
- value : ad0bd22bb90fabde45429b3b79cdbbal2bd86f3dafb80ea22d2b1343995d8418
v 2 :2 elements
v key : AnyHashable("aps")
- value : "aps"
v value : 2 elements
v 0 : 2 elements
- key : alert
v value : 2 elements
v 0: 2 elements
- key : loc-key
- value : Notification
v 1:2elements
- key : loc-args
- value : 0 elements

v1:2elements

- key : mutable-content
-value : 1
v 3:2 elements
v key : AnyHashable("room_id")
- value : "room_id"
- value : lvkibNVgwhZVOaNskRU:matrix.org
v 4 : 2 elements
v key : AnyHashable("event_id")
- value : "event_id"

- value : $0cTr40iZmOd3Ajoc65e_7F6NNVF_BwzEFpyXuMEp29g

We recommend that you use the stock Element Apps from PlayStore or Applestore together with the Push
Gateway that we as Element host.

Mobile Device Management (MDM)

You can use Mobile Device Management to configure and roll out Mobil Applications. To be able to configure
mobile apps this way, the app needs to implement certain interfaces in a standard way. This is called AppConfig.

The Android Element App does not support AppConfig currently. You will need to rebuild the apk to include
changes like a different homeserver or a diffrent pusherURL.

The iOS Element App got enabled for AppConfig in version 1.11.2. this allows the change of the following
parameters and keys without the need to recompile the app.

e im.vector.app.serverConfigDefaultHomeserverUrlString
e im.vector.app.clientPermalinkBaseUrl
e im.vector.app.serverConfigSygnalAPIUrIString

If you employ a Mobile Device Management solution like e.g. VmWare Workspace One, you will need to

configure your iOS Element app with these keys as documented here in section Publish and update Managed
AppConfig for your app in Workspace ONE.

Depending on the brand of MDM you are using, you can create the required keys manually, or enable these
setting with an XML file. The XML file might look like this :

<managedAppConfiguration>
<version>1</version>
<bundleld>im.vector.app</bundleld>
<dict>
<string keyName="im.vector.app.serverConfigDefaultHomeserverUrlString">

<defaultValue>

https://kb.vmware.com/s/article/2960753

<value>https://matrix.BASEDOMAIN</value>
</defaultValue>
</string>
<string keyName="im.vector.app.clientPermalinkBaseUr|">
<defaultValue>
<value>https://messenger.BASEDOMAIN</value>
</defaultValue>
</string>
</dict>

</managedAppConfiguration>

Using your own Push Gateway (Sygnal)

Some organization still feel uncomfortable with using our Push Gateway. You are able to use your own push
gateway (e.g. Sygnal) if you want.

You can install Sygnal as an integration with the Element Server Suite.

During the App Upload process a private key is created. We as Element Company retain and use that key on our
Push infrastructure. This is why you can not use the stock Element Apps, but will need to upload your own
version of the Element App. This will give you access to your own private notification key that is bound to the app
you uploaded.

You will need to configure your Sygnal with the private key of your Element App.

You will need to set the "im.vector.app.serverConfigSygnalAPIUrIString” for the iOS App or the equilivant in the
Android App Source code.

Verifying ESS releases against
Cosign

Cosign ESS Verification Key

ESS does not use Cosign transaction log to be able to support airgapped deployment. We are instead relying on
a public key that you can ask if you need to run image verification in your cluster.

The ESS Cosign public key is the following one :

MFkwEWYHK0ZIzj0CAQYIK0ZIzj0DAQcDQQAE1Lc+7BgkgD+0XYft05CeXto/GalyY
DKNk3048P1J2JMrg3mzw13/m5rzIGjdg)Cs6yctf4+UdACZX5WSiIlWTFbQ==

Verifying manually

To verify a container against ESS Keys, you will have to run the following command :

e Operator : cosign verify registry.element.io/ess-operator:<version> --key cosign.pub
e Updater : cosign verify registry.element.io/ess-updater:<version> --key cosign.pub

If you are running in an airgapped environment, then you will need to append --insecure-ignore-tlog=true to the
above commands

Verifying automatically

You will have to setup and configure your SIGStore Admission Policy to use ESS Public Key.

https://docs.sigstore.dev/policy-controller/overview/

ESS CRDs support in ArgoCD

ArgoCD can support getting the ESS CRDs Status as resource health using Custom Health Checks

You need to configure the following under the configmap argocd-cm of argocd :

data:
resource.customizations: |
matrix.element.io/*:
health.lua: |
hs = {}
if obj.status ~= nil then
if obj.status.conditions ~= nil then
for i, condition in ipairs(obj.status.conditions) do

if condition.type == "Failure" and condition.status == "True" then
hs.status = "Degraded"
hs.message = condition.message
return hs

end

if condition.type == "Running" and condition.status == "True" and condition.reason ~= "Successful"

then

hs.status = "Progressing"
hs.message = condition.message
return hs

end

if condition.type == "Available" and condition.status == "True" then
hs.status = "Healthy"
hs.message = condition.message
return hs

end

if condition.type == "Available" and condition.status == "False" then
hs.status = "Degraded"
hs.message = condition.message
return hs

end

if condition.type == "Successful" and condition.status == "True" then
hs.status = "Healthy"
hs.message = condition.message

return hs

https://argo-cd.readthedocs.io/en/stable/operator-manual/health/#way-2-contribute-a-custom-health-check

end
end
end

end

hs.status = "Progressing"
hs.message = "Waiting for the CR to start to converge..."
return hs

EOT

Synapse database troubleshooting

Room Retention policy enabled causes Synapse database
to consume a lot of disk space

1. Run the following command against synapse postgres database : \d+ . On an installer-managed
postgresql, you can access psgl command using : kubectl exec -it -n element-onprem synapse-
postgres-0 -- bash -c 'psql "dbname=$POSTGRES_DB user=$POSTGRES_USER
password=$POSTGRES_PASSWORD"

2. Check the space taken by the table state groups_state . For example, here it's consuming 540 GB :
public | state_groups_state | table | synapse_user | permanent | 244 GB |

3. If you have Room retention policy enabled, there's a bug which causes some state groups to be
orphaned, and as a consequence they are not cleaned up from the database automatically.

4. Follow the instruction from the page synapse-find-unreferenced-state-groups. The tool is available for

download in the following link rust-synapse-find-unreferenced-state-groups.

5. On Standalone and Installer-managed postgresql database, you can use the following script to do it
automatically. It's going to involve a downtime because Synapse is stopped before cleaning up
orphaned state groups. Please make sure that you have appropriate disk space before running
the script because the script generates a backup of the database before cleaning up the tables..
If you need to restore, the command will be kubectl exec -it pods/synapse-postgres-0 -n element-
onprem -- psql "dbname=synapse user=synapse_user password=$POSTGRES_PASSWORD" <
/path/to/dump.sql :

#!/bin/sh

set -e

echo "Stopping Operator..."
kubectl scale deploy/element-operator-controller-manager -n operator-onprem --replicas=0
echo "Stopping Synapse..."

kubectl delete synapse/first-element-deployment -n element-onprem

while kubectl get statefulsets -n element-onprem --no-headers -0 custom-columns=":metadata.labels" | grep -q
"matrix-server"; do

echo "Waiting for synapse StatefulSets to be deleted..."

sleep 2

done

echo "Forwarding postgresql port..."
kubectl port-forward pods/synapse-postgres-0 -n element-onprem 15432:5432 &
port_forward_pid=$!

sleep 1s

https://github.com/erikjohnston/synapse-find-unreferenced-state-groups/tree/master
https://ems-cust-content.s3.eu-central-1.amazonaws.com/ems-docs/rust-synapse-find-unreferenced-state-groups

POSTGRES PASSWORD="echo $(kubectl get secrets/first-element-deployment-synapse-secrets -n element-
onprem -o yaml | grep postgresPassword | cut -d ':' -f2) | base64 -d°

POSTGRES_USER=synapse_user

POSTGRES_DB=synapse

echo "Find unreferenced state groups..."
.Jrust-synapse-find-unreferenced-state-groups -p
postgres://$POSTGRES_USER:$POSTGRES _PASSWORD@localhost:15432/$POSTGRES DB -0 ./sgs.txt

kill -9 $port_forward_pid

echo "Copy unreferenced state groups list to postgres pod..."

kubectl cp ./sgs.txt -n element-onprem synapse-postgres-0:/tmp/sgs.txt

echo "Backing up postgres database..."

kubectl exec -it pods/synapse-postgres-0 -n element-onprem -- bash -c 'pg_dump "dbname=$POSTGRES_DB
user=$POSTGRES_USER password=$POSTGRES_PASSWORD"' > backup-unreferenced-state-groups-$(date
'+%Y-%m-%d-%H:%M:%S").sql

echo "Cleanup postgres database..."

kubectl exec -it pods/synapse-postgres-0 -n element-onprem -- psql "dbname=$POSTGRES_DB
user=$POSTGRES_USER password=$POSTGRES_PASSWORD" -c "CREATE TEMPORARY TABLE unreffed(id BIGINT
PRIMARY KEY); COPY unreffed FROM '/tmp/sgs.txt' WITH (FORMAT 'csv'); DELETE FROM state_groups_state
WHERE state_group IN (SELECT id FROM unreffed); DELETE FROM state_group_edges WHERE state_group IN
(SELECT id FROM unreffed); DELETE FROM state_groups WHERE id IN (SELECT id FROM unreffed);"

echo "Starting Operator..."

kubectl scale deploy/element-operator-controller-manager -n operator-onprem --replicas=1

Running the script should look like this :

bash cleanup-sgs.sh

Stopping Operator...
deployment.apps/element-operator-controller-manager scaled
Stopping Synapse...

synapse.matrix.element.io "first-element-deployment" deleted
Waiting for synapse StatefulSets to be deleted...

Waiting for synapse StatefulSets to be deleted...

Waiting for synapse StatefulSets to be deleted...

Waiting for synapse StatefulSets to be deleted...
Waiting for synapse StatefulSets to be deleted...
Waiting for synapse StatefulSets to be deleted...
Waiting for synapse StatefulSets to be deleted...
Forwarding postgresql port...
Forwarding from 127.0.0.1:15432 -> 5432
Forwarding from [::1]:15432 -> 5432
Find unreferenced state groups...
Handling connection for 15432
[0s] 741 rows retrieved
Fetched 725 state groups from DB
Total state groups: 725
Found 2 unreferenced groups
Copy unreferenced state groups list to postgres pod...
Defaulted container "postgres" out of: postgres, postgres-init-password, postgres-exporter
cleanup-sgs.sh: line 28: 428645 Killed kubectl port-forward pods/synapse-postgres-0 -n element-
onprem 15432:5432
Backing up postgres database...
Cleanup postgres database...
Defaulted container "postgres" out of: postgres, postgres-init-password, postgres-exporter
DELETE 2
Starting Operator...

deployment.apps/element-operator-controller-manager scaled

Auditbot troubleshooting

Auditbot Viewing Error - Bad MAC

This is a symptom that Auditbot Secure Storage got corrupted. It can happen if you try to change the passphrase
of Auditbot through the Ul for example.

This procedure will make rooms history unable to decrypt in auditbot Ul. The rooms history will still be
available in audit logs generated by auditbot, in the S3 or file storage.

To resolve you will need to reset the 4S passphrase of auditbot.

1. Stop the operator and edit the auditbot pipe :
kubectl scale deploy/element-operator-controller-manager -n operator-onprem --replicas=0
kubectl edit statefulsets.apps first-element-deployment-auditbot-pipe -n element-onprem
2. Add the following under env :

- name: AUDIT_FORCE_NEW_SSSS

value: "true"

Wait for the pipe to restart, check its logs, and check that you can log in through the Admin Console.
3. Edit the Statefulset again:

kubectl edit statefulsets.apps first-element-deployment-auditbot-pipe -n element-onprem

4. Remove the env variable you added:

- name: AUDIT_FORCE_NEW_SSSS

value: "true"

5. Restart the operator :

kubectl scale deploy/element-operator-controller-manager -n operator-onprem --replicas=1

This will restart auditbot and it normal functionality should be restored.

