
Need help doing something more advanced? See guides for Helm Chart installs, Synapse Workers and more!

Synapse Section: Additional Config

Synapse Section: Workers

Kubernetes Override Sections

Customise Containers used by ESS

Secrets

How to run a Webserver on Standalone Deployments

ESS CRDs support in ArgoCD

Verifying ESS releases against Cosign

Notifications, MDM & Push Gateway

Helm Chart Installation

Advanced
Configuration

The Additional Config section, which allows including config not currently configurable via the UI from the

Configuration Manual, is available under the 'Advanced' section of the Synapse page.

Configuration should follow the same format as supplied by the Configuration Manual, if you include options that
have otherwise been configured via the UI they will be overridden with the exception of MAU, Federation and

Synapse Section: Additional Config

We strongly advise against including any config not configurable via the UI as it will most likely interfere
with settings automatically computed by the updater. Additional configuration options are not supported so
we encourage you to first raise your requirements to Support where we can best advise on them.

https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html
https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707403377252.png
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html

Data Retention (see Nonoverridable Config). Though as noted above, any additional config carries the risk that it
will most likely interfere with settings automatically computed by the updater.

You can determine the version of Synapse you have deployed by using kubectl describe pod first-element-
deployment-synapse-main-0 -n element-onprem | grep version , changing the pod name as needed. This will output
something like app.kubernetes.io/version=v1.93.0-lts.1-base , as such when you visit any link to the Configuration
Manual, you should update the page to see the correct information for your version.

What version of Synapse am I running?
Remember to set the configuration manual page to the version of Synapse deployed by the installer,
otherwise you may see configuration options / guidance not applicable to the version of Synapse you
have deployed.

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707910732938.png

Configuration of these via Additional Config , that are in conflict with those set via the UI, will not override the UI
set values. As such, we do not advise including them or any related settings within the Additional Config as they
are of increased risk to causing issues with your deployment.

Due to how the installer sets up Synapse, the auto_join_rooms option will only work when configured as required
on the first deployment. Should you configure this on an existing deployment, or change the rooms on a
subsequent deployment, it will not function and you'll receive various errors within the Synapse pod logs. To
resolve you will need to manually create the rooms and specify auto_join_mxid_localpart in your config. If you're
using AdminBot / AuditBot, either would be a perfect candidate for the specified MXID as you can be sure they
will be in any room you specify.

Therefore in order to get this setup, you'll need to follow these steps:

For a brand new "fresh" install, simply specify with config per the manual, on the first user registration,
they will create and join the specified rooms and all subsequent users will also auto-join.

auto_join_rooms:
 - "#exampleroom:example.com"
 - "#anotherexampleroom:example.com"

For existing installs, or when you wish to adjust the auto-join room list, you will need to:
1. Manually create the rooms and assign the desired alias. (Room Settings -> Local Addresses)
2. Add the following config, making sure to set the localpart to a user present within the rooms

specified. This could be the room creator, someone invited who has joined, or something like
Admin/Audit Bot.

auto_join_mxid_localpart: adminbot

3. Redeploy, wait for the synapse pod to restart
4. Newly registered users will now auto-join the specified rooms

As usual, with auto_join_rooms , the caveat is that changing the rooms will not automatically join previously
registered users to the updated rooms. To automate this you will likely need to make use of the Admin API, see

Using Python with the Admin + Client-Server APIs, specifically Example #1: Join Users to Rooms would be a

Known Issues

max_mau_value , limit_usage_by_mau , federation and retention

auto_join_rooms

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707910771900.png
https://ems-docs.element.io/books/element-support/page/using-python-with-the-admin-client-server-apis
https://ems-docs.element.io/link/458#bkmrk-example-%231%3A-join-use
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#max_mau_value
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#limit_usage_by_mau
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#federation-1
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#retention
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#auto_join_rooms

good starting point.

While use of Additional Config is not recommended, there are certain circumstances built-in to the UI that will
allow you to defer to configuration options you will need to specify within the Additional Config block. These
exceptions will be covered here, however please be advised, using them still carries risk of instability so we'd
recommend sticking with options fully supported by the UI itself.

Within the Synapse section of the installer, as part of the registration configuration, you can select Custom .

When doing so, configuration of Registration should be done via Additional Config, allowing you more control.

Options that can be configured can be found at the linked Registration section of the Synapse Configuration
Manual, but include:

enable_registration
enable_registration_without_verification
registrations_require_3pid
registration_requires_token
registration_shared_secret

By default private IP ranges are blacklisted, per ip_range_blacklist . So when looking to privately federate
between two homeservers, where they'd communicate over one of these private ranges, without specifying said
range using ip_range_whitelist it will fail showing errors like the below:

To resolve this, you will need to add the following to the Additional config:

Exceptions

Custom Registration

Allowing Private Federation via ip_range_whitelist

synapse.http.federation.well_known_resolver - 259 - INFO - GET-369 - Fetching
https://server2.example.com/.well-known/matrix/server
synapse.http.client - 199 - INFO - sentinel - Blocked 172.20.8.127 from DNS resolution to server2.example.com

ip_range_whitelist:
 - '172.16.0.0/12'

Config Example

https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#registration
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#registration
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#enable_registration
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#enable_registration_without_verification
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#registrations_require_3pid
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#registration_requires_token
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#registration_shared_secret
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#ip_range_blacklist
https://element-hq.github.io/synapse/latest/usage/configuration/config_documentation.html#ip_range_whitelist

When setting additional config via the UI, the following would be added to the your deployment.yml :

spec:
 components:
 synapse:
 config:
 additional: |-
 ip_range_whitelist:
 - '172.16.0.0/12'

https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1716546562058.png

The Workers section, which allows you to configure Synape Workers, is available under the 'Advanced' section
of the Synapse page.

Synapse is built on Python, an inherent limitation of which is only being able to execute one thread at a time (due
to the GIL). To allow for horizontal scaling Synapse is built to split out functionality into multiple separate python
processes. While for small instances it is recommended to run Synapse in the default monolith mode, for larger
instances where performance is a concern it can be helpful to split out functionality into these separate
processes, called Workers.

Without Workers
With Workers

For a detailed high-level overview of workers, see the How we fixed Synapse's Scalability blogpost.

1. Scalability. By distributing tasks across multiple processes, Synapse can handle more concurrent
operations and better utilize system resources.

2. Fault Isolation. If a specific worker crashes, it only affects the functionality it handles, rather than
bringing down the entire server.

3. Performance Optimisation. By dedicating workers to specific high-demand tasks, you can improve
the overall performance by removing bottlenecks.

Synapse Section: Workers

What are Synapse Workers

Benefits of Using Workers

https://element-hq.github.io/synapse/latest/workers.html
https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1716452654968.png
https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1716452624815.png
https://matrix.org/blog/2020/11/03/how-we-fixed-synapse-s-scalability/

The separat Worker processes communicate with each other via a Synapse-specific protocol called 'replication'
(analogous to MySQL- or Postgres-style database replication) which feeds streams of newly written data between
processes so they can be kept in sync with the database state.

Synapse uses a Redis pub/sub channel to send the replication stream between all configured Synapse
processes. Additionally, processes may make HTTP requests to each other, primarily for operations which need
to wait for a reply ? such as sending an event.

All the workers and the main process connect to Redis, which relays replication commands between processes
with Synapse using it as a shared cache and as a pub/sub mechanism.

Click on Add Workers

Worker ↔ Synapse Communication

How to configure

https://ems-docs.element.io/uploads/images/gallery/2023-06/image-1687357253633.png
https://ems-docs.element.io/uploads/images/gallery/2023-06/image-1687357284426.png

You have to select a Worker Type. Here are the workers which can be useful to you :

Pushers.
If you experience slowness with notifications sending to clients
Client-Reader.
If you experience slowness when clients login and sync their chat rooms
Synchrotron.
If you experience slowness when rooms are active
Federation-x.
If you are working in a federated setup, you might want to dedicate federation to workers.

If you are experiencing resources congestion, you can try to reduce the resources requested by each worker. Be
aware that

If the node gets full of memory, it will try to kill containers which are consuming more than what they
requested
If a container consumes more than its memory limit, it will be automatically killed by the node, even if
there is free memory left.

You will need to re-run the installer after making these changes for them to take effect.

The ESS Installer has a number of Worker Types, see below for a breakdown of what they are and how they
work.

Purpose. Handles interactions with Application Services (appservices) which are third-party
applications integrated with the Matrix ecosystem.
Functions. Manages the sending and receiving of events to/from appservices, such as bots or bridges
to other messaging systems.

Purpose. Executes background tasks that are not time-sensitive and can be processed
asynchronously.
Functions. Includes tasks like database cleanups, generating statistics, and running periodic
maintenance jobs.

Purpose. Serves read requests from clients, which typically includes retrieving room history and state.
Functions. Offloads read-heavy operations from the main process to improve performance and
scalability.

Worker Types

Appservice

Background

Client Reader

Encryption

Purpose. Manages encryption-related tasks, ensuring secure communication between clients.
Functions. Handles encryption and decryption of messages, key exchanges, and other cryptographic
operations.

Purpose. Responsible for creating new events, such as messages or state changes within rooms.
Functions. Handles the generation and initial processing of events before they are persisted in the
database.

Purpose. Handles the storage of events in the database.
Functions. Ensures that events are correctly and efficiently written to the storage backend.

Purpose. Manages incoming federation traffic from other Matrix homeservers.
Functions. Handles events and transactions received from federated servers, ensuring they are
processed and integrated into the local server’s state.

Purpose. Serves read requests related to federation.
Functions. Manages queries and data retrieval requests that are part of the federation protocol,
improving performance for federated operations.

Purpose. Handles outgoing federation traffic to other Matrix homeservers.
Functions. Manages sending events and transactions to federated servers, ensuring timely and
reliable delivery.

Purpose. Provides the initial sync for clients when they first connect to the server or after a long period
of inactivity.
Functions. Gathers the necessary state and history to bring the client up to date with the current room
state.

Purpose. Manages the storage and retrieval of media files (images, videos, etc.) uploaded by users.
Functions. Handles media uploads, downloads, and caching to improve performance and scalability.

Event Creator

Event Persister

Federation Inbound

Federation Reader

Federation Sender

Initial Synchrotron

Media Repository

Purpose. Manages user presence updates (e.g., online, offline, idle).
Functions. Ensures that presence information is updated and propagated to other users and servers
efficiently.

Purpose. Manages push notifications for users.
Functions. Sends notifications to users about new events, such as messages or mentions, to their
devices.

Purpose. Handles read receipts from users indicating they have read certain messages.
Functions. Processes and stores read receipts to keep track of which messages users have
acknowledged.

Purpose. Manages Single Sign-On (SSO) authentication for users.
Functions. Handles authentication flows for users logging in via SSO providers.

Purpose. Handles synchronization (sync) requests from clients.
Functions. Manages the process of keeping clients updated with the latest state and events in real-
time or near real-time.

Purpose. Manages typing notifications from users.
Functions. Ensures typing indicators are processed and stored, and updates are sent to relevant
clients.

Purpose. Manages the user directory, which allows users to search for other users on the server.
Functions. Maintains and queries the user directory, improving search performance and accuracy.

Purpose. Acts as a reverse proxy for incoming HTTP traffic, distributing it to the appropriate worker
processes.
Functions. Balances load and manages connections to improve scalability and fault tolerance.

Presence Writer

Pusher

Receipts Account

Sso Login

Synchrotron

Typing Persister

User Dir

Frontend Proxy

Found in under Advanced in any section where you configure a component of the installer, under the
Kubernetes heading. Here you can override Kubernetes configuration for each component.

In Kubernetes, annotations are key-value pairs associated with Kubernetes objects like pods, services, and
nodes. Annotations are meant to be used for non-identifying metadata and are typically used to provide additional
information about the objects. Unlike labels, which are used for identification and organization, annotations are
more free-form and can contain arbitrary data.

Annotations are often used for various purposes, such as:

Documentation.
Providing additional information about a resource that might be useful for administrators or developers.
Tooling Integration.
Integrating with external tools or automation systems that rely on specific metadata.
Customisation.
Storing configuration information that affects the behaviour of controllers, operators, or custom tooling.

Kubernetes Override Sections

Common

Annotations

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1706791299674.png
https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1706791551167.png

Audit Trailing.
Capturing additional information for audit or tracking purposes.

See explanation of annotations above

Depending on the component you are viewing, you may see Limits and Requests broken out for each sub-
component applicable to that component. When configuring Element Web you will only see the Limits and
Requests config, for Integrator however, you will see Limits and Requests for each sub-component; Appstore ;
Integrator ; Modular Widgets ; and Scalar Web .

Ingress

Annotations

Services

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1706791564745.png
https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707246166447.png

See explanation of annotations above

Depending on the component you are viewing, you may see Limits and Requests broken out for each sub-
component applicable to that component. When configuring Element Web you will only see the Limits and
Requests config, for Integrator however, you will see Limits and Requests for each sub-component; Appstore ;
Integrator ; Modular Widgets ; and Scalar Web .

Workloads

Annotations

Resources

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1706791788806.png
https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707245412822.png
https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707245963303.png

Limits

Requests

Security Context

Docker Secrets

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707245447309.png

Host Aliases

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707245474966.png

https://ems-docs.element.io/uploads/images/gallery/2024-02/image-1707245501958.png

How to change an image used by a container deployed by ESS.

In specific use cases you might want to change the image used for a specific pod, for example, to add additional
contents, change web clients features, etc. In general the steps to do this involve:

Creating a new ConfigMap definition with the overrides you need to configure, then injecting it into the
cluster.
Configuring the installer to use the new Images Digests Config Map.
Generating a secret for the registry (if it requires authentication) and adding it to ESS.

In order to override images used by ESS during the install, you will need to inject a new ConfigMap which
specifies the image to use for each component. To do that, you will need to inject a ConfigMap. It's structure
maps the components of the ESS, all of them can be overridden :

Config Example

data:
 images_digests: |# Copyright 2023 New Vector Ltd
 adminbot:
 access_element_web:
 haproxy:
 pipe:
 auditbot:

Customise Containers used by ESS

We strongly advise against customising any pods. Customised containers are not supported and may
break your setup so we encourage you to first raise your requirements to Support where we can best
advise on them.

Non-Airgapped Environments

Creating the new Images Digests Config Map

 access_element_web:
 haproxy:
 pipe:
 element_call:
 element_call:
 sfu:
 jwt:
 redis:
 element_web:
 element_web:
 groupsync:
 groupsync:
 hookshot:
 hookshot:
 hydrogen:
 hydrogen:
 integrator:
 integrator:
 modular_widgets:
 appstore:
 irc_bridges:
 irc_bridges:
 jitsi:
 jicofo:
 jvb:
 prosody:
 web:
 sysctl:
 prometheus_exporter:
 haproxy:
 user_verification_service:
 matrix_authentication_service:
 init:
 matrix_authentication_service:
 secure_border_gateway:
 secure_border_gateway:
 sip_bridge:
 sip_bridge:
 skype_for_business_bridge:

 skype_for_business_bridge:
 sliding_sync:
 api:
 poller:
 sydent:
 sydent:
 sygnal:
 sygnal:
 synapse:
 haproxy:
 redis:
 synapse:
 synapse_admin:
 synapse_admin:
 telegram_bridge:
 telegram_bridge:
 well_known_delegation:
 well_known_delegation:
 xmpp_bridge:
 xmpp_bridge:

Each container on this tree needs at least the following properties to override the source of download :

You can also override the image tag and the image digest if you want to enforce using digests in your deployment
:

For example, the required ConfigMap manifest (e.g. images_digest_configmap.yml) format would be, to override
the element_web/element_web container source path :

Config Example

apiVersion: v1
kind: ConfigMap

image_repository_path: elementdeployment/vectorim/element-web
image_repository_server: localregistry.local

image_digest: sha256:ee01604ac0ec8ed4b56d96589976bd84b6eaca52e7a506de0444b15a363a6967
image_tag: v0.2.2

metadata:
 name: config_map_name
 namespace: namespace_of_your_deployment
data:
 images_digests: |
 element_web:
 element_web:
 image_repository_path: mycompany/custom-element-web
 image_repository_server: docker.io
 image_tag: v2.1.1-patched

Notes:

the image_digest: may need to be regenerated, or it can be removed.
The image_repository_path needs to reflect the path in your local repository.
The image_repository_server should be replaced with your local repository URL

The new ConfigMap can then be injected into the cluster with:

kubectl apply -f images_digest_configmap.yml -n <namespace of your deployment>

You will also need to configure the ESS Installer to use the new Images Digests Config Map by adding the
<config map name> into the Cluster advanced section.

Configuring the installer

If your registry requires authentication, you will need to create a new secret. So for example, if your registry is
called myregistry and the URL of the registry is myregistry.tld , the command would be:

The new secret can then be added into the ESS Installer GUI advanced cluster Docker Secrets:

Supplying registry credentials

kubectl create secret docker-registry myregistry --docker-username=<registry user> --docker-
password=<registry password> --docker-server=myregistry.tld -n <your namespace>

https://ems-docs.element.io/uploads/images/gallery/2023-10/image-1698326646967.png

To perform these actions, you will need the airgapped archive extracted onto a host with an internet connection:

1. Open a terminal, you will be using the crane binary found within the airgapped directory extracted.
Firstly make sure to authenticate with any of the registries you will be downloading from using:

You will need to do this for both gchr.io and gitlab-registry :

airgapped/utils/crane auth login REGISTRY.DOMAIN -u EMS_USERNAME -p EMS_TOKEN

airgapped/utils/crane auth login gitlab-registry.matrix.org -u EMS_USERNAME -p EMS_TOKEN

airgapped/utils/crane auth login ghcr.io -u EMS_USERNAME -p EMS_TOKEN

2. Use the following to download the required image:

Note: <imagename> should be formatted like so registry/organisation/repo:version , for example, to
download the Element Call Version 0.5.12 image, the <imagename> would be ghcr.io/vector-
im/element-call:v0.5.12

For registry.element.io you will need to use skopeo instead i.e.:

airgapped/utils/crane pull --format tarball <imagenanme> image.tar

airgapped/utils/crane pull --format tarball ghcr.io/vector-im/element-call:v0.5.12 image.tar

Airgapped Environments

https://ems-docs.element.io/uploads/images/gallery/2023-10/image-1698325423589.png

skopeo copy docker://registry.element.io/group-sync:v0.13.7-dbg docker-
archive://$(pwd)/gsync-dbg.tar

3. The generate the image digest (used in the next step). Continuing the Element Call Version 0.5.12
example, use the below command to return the image digest string:

Returns:

airgapped/utils/crane --platform amd64 digest --tarball image.tar

sha256:f16c6ef5954135fb4e4e0af6b3cb174e641cd2cbee901b1262b2fdf05ddcedfc

4. Copy image.tar into the airgapped/images folder, renaming it to the digest string generated in step 3,
<digest>.tar excluding the sha256: prefix. For our Element Call Version 0.5.12 example, the

filename would be:

f16c6ef5954135fb4e4e0af6b3cb174e641cd2cbee901b1262b2fdf05ddcedfc.tar

5. Edit the images_digests.yml file also found in the airgapped/images folder, like so:

For our Element Call Version 0.5.12 example, you would update like so:

 <component_name>:
 <component_image>:
 image_digest: sha256:<digest>
 image_repository_path: <organisation>/<repo>
 image_repository_server: <registry>
 image_tag: <new version>

 element_call:
 element_call:
 image_digest: sha256:f16c6ef5954135fb4e4e0af6b3cb174e641cd2cbee901b1262b2fdf05ddcedfc
 image_repository_path: vector-im/element-call
 image_repository_server: ghcr.io
 image_tag: v0.5.12

If you are overriding image, you will need to make sure that your images are compatible with the new releases of
ESS. You can use a staging environment to tests the upgrades for example.

Handling new releases of ESS

Find out more about the Secrets block found under each Sections' Advanced configuration options

Under 'Advanced' in each section, you may find a block listing all the associated secrets configured as part of this
section. This directly correlates to your secrets.yml and will allow you to remove secrets no longer required. For
example, on the Cluster Section you may have uploaded a Certificate Authority CA.pem, you can use this block
to remove it should it no longer be required.

It is not however advised to modify the contents of secrets from this view, you should always do so via the
associated UI that configures it in the first place, see the below example from the Cluster section.

Config Example

secrets.yml

apiVersion: v1
kind: Secret
metadata:

Secrets

CA Pem

https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1716368370442.png

 name: global
 namespace: element-onprem
data: # Added to the `global`, `element-onprem` secret as `ca.pem` under the `data` section.
Other values may also be present here.
 ca.pem: >-
 base64encodedCAinPEMformatString

If you have uploaded a Certificate Authority certificate, you will find it listed in this section, if a certificate was
uploaded in error, you can use the 'Delete' button next to the entry to remove it.

Config Example

secrets.yml

apiVersion: v1
kind: Secret
metadata:
 name: global
 namespace: element-onprem
data: # Added to the `global`, `element-onprem` secret as `genericSharedSecret` under the
`data` section. Other values may also be present here.
 genericSharedSecret: QmdrWkVzRE5aVFJSOTNKWVJGNXROTG10UTFMVWF2

Like with the CA certificate option above, this will be present due to the Generic Shared Secret, this is auto-
generated and will be replaced if you change it there (and click 'Save' / 'Continue'). It is not advised to edit this
property here.

Generic Shared Secret

This guide is does not come with support by Element. It is not part of the Element Server Suite (ESS) product.
Use at your own risk. Remember you are responsible of maintaining this software stack yourself.

Some config options require a web content to be served. For example:

Changing Element Web appearance with custom background pictures.
Providing a HomePage for display in Element Web.
Providing a Guide PDF from your server in an airgapped environment.

One way to provide this content is to run a web server in the same microk8s Kubernetes Cluster as the Element
Enterprise Suite.

The following guide describes the steps to setup the Bitnami Apache helm chart in the Standalone microk8s
cluster setup by Element Server Suite.

Requirements:

a DNS entry pages.BASEDOMAIN.
a Certificate (private key + certificate) for pages.BASEDOMAIN
an installed standalone Element Server Suite setup
access to the server on the command line

Results:

a web server that runs in the mircok8s cluster
a directory /var/www/apache-content to place and modify web content like homepage, backgrounds
and guides.

You can use any webserver that you like, in this example we will user the Bitnami Apache chart.

We need helm version 3. You can follow this Guide or ask microk8s to install helm3 .

How to run a Webserver on
Standalone Deployments

You should first consider using an existing webserver before installing and maintaining an additional
webserver for these requirements.

This guide is applicable to the Single Node deployment of Element Server Suite but can be used for
guidance on how to host a webserver in other Kubernetes Clusters as well.

Installing Prerequisites

https://helm.sh/docs/intro/install/

Let's check if it is working

Create and Alias for helm

Add the bitnami repository

Update the repo information

Create a directory to supply content:

Enabling Helm3 with microk8s

$ microk8s enable helm3
Infer repository core for addon helm3
Enabling Helm 3
Fetching helm version v3.8.0.
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 12.9M 100 12.9M 0 0 17.4M 0 --:--:-- --:--:-- --:--:-- 17.4M
Helm 3 is enabled

$ microk8s.helm3 version
version.BuildInfo{Version:"v3.8.0", GitCommit:"d14138609b01886f544b2025f5000351c9eb092e",
GitTreeState:"clean", GoVersion:"go1.17.5"}

echo alias helm=microk8s.helm3 >> ~/.bashrc
source ~/.bashrc

Enable the Bitnami Helm Chart repository

helm repo add bitnami https://charts.bitnami.com/bitnami

helm repo update

Preparation and Configuration

Prepare the Web-Server Content

Create a homepage home.html , i.e.:

Put your content into the apache-content directory:

There are multiple ways to provide this content to the apache pod. The bitnami helm chart user ConfigMaps,
Physical Volumes or a Git Repository.

ConfigMaps are a good choice for smaller amounts of data. There is a hard limit of 1MiB on ConfigMaps. So if all
your data is not more that 1MiB, the config map is a good choice for you.

Physical Volumes are a good choice for larger amounts of data. There are several choices for backing storage
available. In the context of the standalone deployments of ESS a Physical Hostpath is the most practical.
HostPath is not a good solution for mutli node k8s clusters, unless you pin a pod to a certain node. Pinning the
pod to a single node would put the workload at risk, should that node go down.

Git Repository is a favourite as it versions the content and you track and revert to earlier states easily. The
bitnami apache helm chart is built in a way that updates in regular intervals to your latest changes.

We are selecting the Physical Volume option to serve content in this case. Our instance of Microk8s comes with
the Hostpath storage addon enabled.

Define the physical volume:

sudo mkdir /var/www/apache-content

<h2 style="text-align:center">

Welcome to the Element Chat Server.</h2>

<p style="text-align:center">You can find a <a href="https://static.element.io/pdfs/element-user-
guide.pdf">Getting Started Guide here</p>

<p style="text-align:center">Powered by Matrix, provided by Element.</p>

<p style="text-align:center">Explore rooms</p>

<p style="text-align:center">Create a
Key Backup & Passphrase now!

(see Getting Started Guite p. 5)</p>

cp /tmp/background.jpg /apache-content/
cp /tmp/home.html ~element/apache-content/

cat <<EOF>pv-volume.yaml
apiVersion: v1

Apply to the cluster

Next we need a Physical Volume Claim:

Apply to the cluster to create the pvc

kind: PersistentVolume
metadata:
 name: apache-content-pv
 labels:
 type: local
spec:
 storageClassName: microk8s-hostpath
 persistentVolumeReclaimPolicy: Retain
 capacity:
 storage: 100Mi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/var/www/apache-content"
EOF

kubectl apply -f pv-volume.yaml

cat <<EOF>pv-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: apache-content-pvc
spec:
 volumeName: apache-content-pv
 storageClassName: microk8s-hostpath
 accessModes: [ReadWriteOnce]
 resources: { requests: { storage: 100Mi } }
EOF

kubectl apply -f pv-claim.yaml

Configure the Helm Chart

We need to add configurations to adjust the apache deployment to our needs. The K8s service should be
switched to ClusterIP. The Single Node deployment includes an Ingress configuration through nginx that we can
use to route traffic to this webserver. The name of the ingressClass is "public". We will need to provide a
hostname. This name needs to be resolvable through DNS. This could be done through the wildcard entry for
*.$BASEDOMAIN that you might already have. You will need a certificate and certificate private key to secure this
connection through TLS.

The full list of configuration options of this chart is explained in the bitnami repository here

Create a file called apache-values.yml in the home directory of your element user directory.

Remember to replace BASEDOMAIN with the correct value for your deployment.

Now we are ready to deploy the apache helm chart

List the deployed helm charts:

Get more details:

cat <<EOF>apache-values.yaml
service:
 type: ClusterIP
ingress:
 enabled: true
 ingressClassName: "public"
 hostname: pages.BASEDOMAIN
htdocsPVC: apache-content-pvc
EOF

Deployment

Deploy the Apache Helm Chart

helm install myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Manage the deployment

$ helm list
NAME 	NAMESPACE	REVISION	UPDATED 	STATUS 	CHART 	APP VERSION
myhomepage	default 	1 	2023-09-06 14:46:33.352124975 +0000 UTC	deployed	apache-10.1.0	2.4.57

https://github.com/bitnami/charts/blob/main/bitnami/apache/README.md#deploying-a-custom-web-application.

If you need to update the deployment, modify the required apache-values.yaml and run :

If you don't want the deployment any more, you can remove it.

If you are in a connected environment, you can rely on cert-manager to create certificates and secrets for you.

If you have cert-manager enabled. You will just need to add the right annotations to the ingress of your
deployment. Modify you apache-values.yaml and add these lines to the ingress block :

$ helm status myhomepage
NAME: myhomepage
LAST DEPLOYED: Wed Sep 6 14:46:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
CHART NAME: apache
CHART VERSION: 10.1.0
APP VERSION: 2.4.57

** Please be patient while the chart is being deployed **

1. Get the Apache URL by running:

 You should be able to access your new Apache installation through:
 - http://pages.lutz-gui.sales-demos.element.io

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

helm uninstall myhomepage

Secure the deployment with certificates

Cert-manager with letsencrypt

 tls: true
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt
 kubernetes.io/ingress.class: public

You will need to upgrade your deployment to reflect these changes:

There are situations in which you want custom certificates instead. These can be used by modifying your apache-
values.yaml. Add the following lines to the ingress block in the apache-values.yaml. Take care to get the
indentation right. Replace the ... with your data.

You will need to upgrade your deployment to reflect these changes:

You can make your life easier by using bash completing and an alias for kubectl. You will need to have the bash-
completion package installed as a prerequisite.

For all users on the system:

Set an aias for kubectl for your user:

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Custom Certificates

 tls: true
 extraTls:
 - hosts:
 - pages.lutz-gui.sales-demos.element.io
 secretName: "pages.lutz-gui.sales-demos.element.io-tls"
 secrets:
 - name: pages.lutz-gui.sales-demos.element.io-tls
 key: |-
 -----BEGIN RSA PRIVATE KEY-----
 ...
 -----END RSA PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Tips and Tricks

kubectl completion bash | sudo tee /etc/bash_completion.d/kubectl > /dev/null

Enable auto-completion for your alias

After reloading your Shell, you can now enjoy auto completion for your k (kubectl) commands.

echo 'alias k=kubectl' >>~/.bashrc

echo 'complete -o default -F __start_kubectl k' >>~/.bashrc

ArgoCD can support getting the ESS CRDs Status as resource health using Custom Health Checks

You need to configure the following under the configmap argocd-cm of argocd :

ESS CRDs support in ArgoCD

data:
 resource.customizations: |
 matrix.element.io/*:
 health.lua: |
 hs = {}
 if obj.status ~= nil then
 if obj.status.conditions ~= nil then
 for i, condition in ipairs(obj.status.conditions) do
 if condition.type == "Failure" and condition.status == "True" then
 hs.status = "Degraded"
 hs.message = condition.message
 return hs
 end
 if condition.type == "Running" and condition.status == "True" and condition.reason ~= "Successful"
then
 hs.status = "Progressing"
 hs.message = condition.message
 return hs
 end
 if condition.type == "Available" and condition.status == "True" then
 hs.status = "Healthy"
 hs.message = condition.message
 return hs
 end
 if condition.type == "Available" and condition.status == "False" then
 hs.status = "Degraded"
 hs.message = condition.message
 return hs
 end
 if condition.type == "Successful" and condition.status == "True" then
 hs.status = "Healthy"
 hs.message = condition.message
 return hs

https://argo-cd.readthedocs.io/en/stable/operator-manual/health/#way-2-contribute-a-custom-health-check

 end
 end
 end
 end

 hs.status = "Progressing"
 hs.message = "Waiting for the CR to start to converge..."
 return hs
 EOT

ESS does not use Cosign transaction log to be able to support airgapped deployment. We are instead relying on
a public key that you can ask if you need to run image verification in your cluster.

The ESS Cosign public key is the following one :

To verify a container against ESS Keys, you will have to run the following command :

Operator: cosign verify registry.element.io/ess-operator:<version> --key cosign.pub
Updater: cosign verify registry.element.io/ess-updater:<version> --key cosign.pub

If you are running in an airgapped environment, then you will need to append --insecure-ignore-tlog=true to the
above commands

You will have to setup and configure your SIGStore Admission Policy to use ESS Public Key.

Verifying ESS releases against
Cosign

Cosign ESS Verification Key

-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE1Lc+7BqkqD+0XYft05CeXto/Ga1Y
DKNk3o48PIJ2JMrq3mzw13/m5rzlGjdgJCs6yctf4+UdACZx5WSiIWTFbQ==
-----END PUBLIC KEY-----

Verifying manually

Verifying automatically

https://docs.sigstore.dev/policy-controller/overview/

The stock Android and iOS Apps will use an Element owned Push Gateway to send Notification via the Apple or
Google Notifiction Services.

The URL of our push gateway is https://matrix.org/_matrix/push/v1/notify

The apps will on startup register with the Google or Apple Notification Services (APNs) and request a
push_notification_client_identifier. If notifications need sending, the homeserver will use the configured Push
Gateway to sent notification through the APNs.

A notification will not contain sensitive content. This is what notificatons actually look like :

Notifications, MDM & Push Gateway

What is a Notification?

▿ 5 elements
 ▿ 0 : 2 elements
 ▿ key : AnyHashable("unread_count")
 - value : "unread_count"
 - value : 1
 ▿ 1 : 2 elements
 ▿ key : AnyHashable("pusher_notification_client_identifier")
 - value : "pusher_notification_client_identifier"
 - value : ad0bd22bb90fabde45429b3b79cdbba12bd86f3dafb80ea22d2b1343995d8418
 ▿ 2 : 2 elements
 ▿ key : AnyHashable("aps")
 - value : "aps"
 ▿ value : 2 elements
 ▿ 0 : 2 elements
 - key : alert
 ▿ value : 2 elements
 ▿ 0 : 2 elements
 - key : loc-key
 - value : Notification
 ▿ 1 : 2 elements
 - key : loc-args
 - value : 0 elements
 ▿ 1 : 2 elements

We recommend that you use the stock Element Apps from PlayStore or Applestore together with the Push
Gateway that we as Element host.

You can use Mobile Device Management to configure and roll out Mobil Applications. To be able to configure
mobile apps this way, the app needs to implement certain interfaces in a standard way. This is called AppConfig.

The Android Element App does not support AppConfig currently. You will need to rebuild the apk to include
changes like a different homeserver or a diffrent pusherURL.

The iOS Element App got enabled for AppConfig in version 1.11.2. this allows the change of the following
parameters and keys without the need to recompile the app.

im.vector.app.serverConfigDefaultHomeserverUrlString
im.vector.app.clientPermalinkBaseUrl
im.vector.app.serverConfigSygnalAPIUrlString

If you employ a Mobile Device Management solution like e.g. VmWare Workspace One, you will need to

configure your iOS Element app with these keys as documented here in section Publish and update Managed
AppConfig for your app in Workspace ONE.

Depending on the brand of MDM you are using, you can create the required keys manually, or enable these
setting with an XML file. The XML file might look like this :

 - key : mutable-content
 - value : 1
 ▿ 3 : 2 elements
 ▿ key : AnyHashable("room_id")
 - value : "room_id"
 - value : !vkibNVqwhZVOaNskRU:matrix.org
 ▿ 4 : 2 elements
 ▿ key : AnyHashable("event_id")
 - value : "event_id"
 - value : $0cTr40iZmOd3Aj0c65e_7F6NNVF_BwzEFpyXuMEp29g

Mobile Device Management (MDM)

<managedAppConfiguration>
 <version>1</version>
 <bundleId>im.vector.app</bundleId>
 <dict>
 <string keyName="im.vector.app.serverConfigDefaultHomeserverUrlString">
 <defaultValue>

https://kb.vmware.com/s/article/2960753

Some organization still feel uncomfortable with using our Push Gateway. You are able to use your own push
gateway (e.g. Sygnal) if you want.

You can install Sygnal as an integration with the Element Server Suite.

During the App Upload process a private key is created. We as Element Company retain and use that key on our
Push infrastructure. This is why you can not use the stock Element Apps, but will need to upload your own
version of the Element App. This will give you access to your own private notification key that is bound to the app
you uploaded.

You will need to configure your Sygnal with the private key of your Element App.

You will need to set the "im.vector.app.serverConfigSygnalAPIUrlString" for the iOS App or the equilivant in the
Android App Source code.

 <value>https://matrix.BASEDOMAIN</value>
 </defaultValue>
 </string>
 <string keyName="im.vector.app.clientPermalinkBaseUrl">
 <defaultValue>
 <value>https://messenger.BASEDOMAIN</value>
 </defaultValue>
 </string>
 </dict>
</managedAppConfiguration>

Using your own Push Gateway (Sygnal)

This document will walk you through how to get started with our Element Server Suite Helm Charts. These charts
are provided to be used in environments which typically deploy applications by helm charts. If you are unfamiliar
with helm charts, we'd highly recommend that you start with our Enterprise Installer.

ESS deployment rely on the following components to deploy the workloads on a kubernetes cluster :

1. Updater : It reads an ElementDeployment CRD manifest, and generates the associated individual
Element CRDs manifests linked together

2. Operator : It reads the individual Element CRDs manifests to generates the associated kubernetes
workloads

3. ElementDeployment : This CRD is a simple structure following the pattern :

Helm Chart Installation

Introduction

General concepts

spec:
 global:
 k8s:
 # Global settings that will be applied by default to all workloads if not forced locally. This is where you will be
able to configure a default ingress certificate, default number of replicas on the deployments, etc.
 config:
 # Global configuration that can be used by every element component
 secretName: # The global secret name. Required secrets keys can be found in the description of this field
using `kubectl explain`. Every config named `<foo>SecretKey` will point to a secret key containing the secret
targetted by this secret name.
 components:
 <component name>:
 k8s:
 # Local kubernetes configuration of this component. You can override here the global values to force a
certain behaviour for each components.
 config:

Any change to the ElementDeployment manifest deployed in the namespace will trigger a reconciliation loop.
This loop will update the Element manifests read by the Operator. It will again trigger a reconciliation loop in the
Operator process, which will update kubernetes workloads accordingly.

If you manually change a workload, it will trigger a reconciliation loop and the Operator will override your change
on the workload.

The deployment must be managed only through the ElementDeployment CRD.

We advise you to deploy the helm charts in one of the deployments model :

1. Cluster-Wide deployment : In this mode, the CRDs Conversion Webhook and the controller managers
are deployed in their own namespace, separated from ESS deployments. They are able to manage
ESS deployments in any namespace of the cluster The install and the upgrade of the helm chart
requires cluster admin permissions.

2. Namespace-scoped deployment : In this mode, only the CRDs conversion webhooks require cluster
admin permissions. The Controller managers are deployed directly in the namespace of the element
deployment. The install and the upgrade of ESS does not require cluster admin permissions if the
CRDs do not change.

When cert-manager is present in the cluster, it is possible to use the all-in-one ess-system helm chart to deploy
the operator and the updater.

First, let's add the ess-system repository to helm, replace ems_image_store_username and
ems_image_store_token with the values provided to you by Element.

 # This component configuration
 secretName: # The component secret name containing secret values. Required secrets keys can be found in
the description of this field using `kubectl explain`. Every config named `<foo>SecretKey` will point to a secret
key containing the secret targetted by this secret name.
 <another component>:
 ...

Installing the Operator and the
Updater helm charts

All-in-one deployment (Requires cert-
manager)

When deploying ESS-System as a cluster-wide deployment, updating ESS requires ClusterAdmin permissions.

Create the following values file :

When deploying ESS-System as a namespace-scoped deployment, you have to deploy ess-system in two parts :

1. One for the CRDs and the conversion webhooks. This part will be managed with ClusterAdmin
permissions. These update less often.

2. One for the controller managers. This part will be managed with namespace-scoped permissions.

In this mode, the ElementDeployment CR is deployed in the same namespace as the controller-managers.

Create the following values file to deploy the CRDs and the conversion webhooks :

helm repo add ess-system https://registry.element.io/helm/ess-system --username
<ems_image_store_username> --password '<ems_image_store_token>' --version ~2.17.0

Cluster-wide deployment

emsImageStore:
 username: <username>
 password: <password>

element-operator:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

element-updater:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

Namespace-scoped deployment

emsImageStore:
 username: <username>

Create the following values file to deploy the controller managers in their namespace :

 password: <password>

element-operator:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: false # Deploys the controller managers

element-updater:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: false # Deploys the controller managers

emsImageStore:
 username: <username>
 password: <password>

element-operator:
 clusterDeployment: false
 deployCrds: false # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

element-updater:
 clusterDeployment: false
 deployCrds: false # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

Without cert-manager present on the
cluster

First, let's add the element-updater and element-operator repositories to helm, replace
ems_image_store_username and ems_image_store_token with the values provided to you by Element.

Now that we have the repositories configured, we can verify this by:

and should see the following in that output:

N.B. This guide assumes that you are using the element-updater and element-operator namespaces. You can
call it whatever you want and if it doesn't exist yet, you can create it with: kubectl create ns <name> .

To generate an ems-credentials to be used by your helm chart deployment, you will need to generate an
authentication token and palce it in a secret.

The conversion webhooks need their own self-signed CA and TLS certificate to be integrated into kubernetes.

For example using easy-rsa :

helm repo add element-updater https://registry.element.io/helm/element-updater --username
<ems_image_store_username> --password '<ems_image_store_token>'
helm repo add element-operator https://registry.element.io/helm/element-operator --username
<ems_image_store_username> --password '<ems_image_store_token>'

helm repo list

NAME URL
element-operator https://registry.element.io/helm/element-operator
element-updater https://registry.element.io/helm/element-updater

Generating an image pull secret with EMS credentials

kubectl create secret -n element-updater docker-registry ems-credentials --docker-server=registry.element.io --
docker-username=<EMSusername> --docker-password=<EMStoken>`
kubectl create secret -n element-operator docker-registry ems-credentials --docker-server=registry.element.io --
docker-username=<EMSusername> --docker-password=<EMStoken>`

Generating a TLS secret for the webhook

easyrsa init-pki
easyrsa --batch "--req-cn=ESS-CA`date +%s`" build-ca nopass
easyrsa --subject-alt-name="DNS:element-operator-conversion-webhook.element-operator"\
 --days=10000 \
 build-server-full element-operator-conversion-webhook nopass

Create a secret for each of these two certificates :

Create the following values file to deploy the controller managers in their namespace :

values.element-operator.yml :

values.element-updater.yml :

easyrsa --subject-alt-name="DNS:element-updater-conversion-webhook.element-updater"\
 --days=10000 \
 build-server-full element-updater-conversion-webhook nopass

kubectl create secret tls element-operator-conversion-webhook --cert=pki/issued/element-operator-conversion-
webhook.crt --key=pki/private/element-operator-conversion-webhook.key --namespace element-operator
kubectl create secret tls element-updater-conversion-webhook --cert=pki/issued/element-updater-conversion-
webhook.crt --key=pki/private/element-updater-conversion-webhook.key --namespace element-updater

Installing the helm chart for the element-updater and the
element-operator

clusterDeployment: true
deployCrds: true # Deploys the CRDs and the Conversion Webhooks
deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
deployManager: true # Deploys the controller managers
crds:
 conversionWebhook:
 caBundle: # Paste here the content of `base64 pki/ca.crt -w 0`
 tlsSecretName: element-operator-conversion-webhook
 imagePullSecret: ems-credentials
operator:
 imagePullSecret: ems-credentials

clusterDeployment: true
deployCrds: true # Deploys the CRDs and the Conversion Webhooks
deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
deployManager: true # Deploys the controller managers
crds:
 conversionWebhook:
 caBundle: # Paste here the content of `base64 pki/ca.crt -w 0`
 tlsSecretName: element-updater-conversion-webhook

Run the helm install command :

Now at this point, you should have the following 4 containers up and running:

The ess-stack helm chart is available in the ess-system repository :

You can install it using the following command against your values file. See below for the value file configuration.

 imagePullSecret: ems-credentials
updater:
 imagePullSecret: ems-credentials

helm install element-operator element-operator/element-operator --namespace element-operator -f
values.yaml --version ~2.17.0
helm install element-updater element-updater/element-updater --namespace element-updater -f values.yaml --
version ~2.17.0

[user@helm ~]$ kubectl get pods -n element-operator
NAMESPACE NAME READY STATUS RESTARTS AGE
element-operator element-operator-controller-manager-c8fc5c47-nzt2t 2/2 Running 0 6m5s
element-operator element-operator-conversion-webhook-7477d98c9b-xc89s 1/1 Running 0
6m5s
[user@helm ~]$ kubectl get pods -n element-updater
NAMESPACE NAME READY STATUS RESTARTS AGE
element-updater element-updater-controller-manager-6f8476f6cb-74nx5 2/2 Running 0 106s
element-updater element-updater-conversion-webhook-65ddcbb569-qzbfs 1/1 Running 0 81s

Generating the
ElementDeployment CR to Deploy
Element Server Suite

helm repo add ess-system https://registry.element.io/helm/ess-system --username
<ems_image_store_username> --password '<ems_image_store_token>'

helm install ess-system/ess-stack --namespace element-onprem -f values.yaml --version ~2.17.0

It will deploy an ElementDeployment CR and its associated secrets from the chart values file.

The values file will contain the following structure :

Available Components & Global settings can be found under https://ess-schemas-docs.element.io
For each SecretKey variable, the value will point to a secret key under secrets . For example,
components.synapse.config.macaroonSecretKey is macaroon , so a macaroon secret must exists

under secrets.synapse.content .

emsImageStore:
 username: <username>
 password: <password>

secrets:
 global:
 content:
 genericSharedSecret: # generic shared secret
 synapse:
 content:
 macaroon: # macaroon
 adminPassword: # synapse admin password
 postgresPassword: # postgres password
 telemetryPassword: # your ems image store password
 registrationSharedSecret: # registration shared secret
 # python3 -c "import signedjson.key; signing_key = signedjson.key.generate_signing_key(0);
print(f\"{signing_key.alg} {signing_key.version} {signedjson.key.encode_signing_key_base64(signing_key)}\")"
 signingKey: # REPLACE WITH OUTPUT FROM PYTHON COMMAND ABOVE

 # globalOptions contains the global properties of the ELementDeployment CRD
globalOptions:
 config:
 domainName: # your base domain
 k8s:
 ingresses:
 tls:
 mode: certmanager
 certmanager:
 issuer: letsencrypt
 workloads:
 replicas: 1

https://ess-schemas-docs.element.io

To check on the progress of the deployment, you will first watch the logs of the updater:

You will have to tab complete to get the correct hash for the element-updater-controller-manager pod name.

Once the updater is no longer pushing out new logs, you can track progress with the operator or by watching
pods come up in the element-onprem namespace.

Operator status:

components:
 elementWeb:
 k8s:
 ingress:
 fqdn: # element web fqdn
 synapse:
 config:
 media:
 volume:
 size: 5Gi
 postgresql:
 database: # postgres database
 host: # postgres host
 port: 5432
 user: # postgres user
 telemetry:
 username: <your ems image store username>
 instanceId: <your ems image store username>
 k8s:
 ingress:
 fqdn: # synapse fqdn
 wellKnownDelegation:
 config: {}
 k8s: {}

Checking deployment progress

kubectl logs -f -n element-updater element-updater-controller-manager-<rest of pod name>

Watching reconciliation move forward in the element-onprem namespace:

Watching dependent CRs errors :

Watching pods come up in the element-onprem namespace:

kubectl logs -f -n element-operator element-operator element-operator-controller-manager-<rest of pod name>

kubectl get elementdeployment -o yaml | grep dependentCRs -A20 -n element-onprem -w

kubectl get <dependentCR>/<name> -o yaml

kubectl get pods -n element-onprem -w

