
This guide is does not come with support by Element. It is not part of the Element Server Suite (ESS) product.
Use at your own risk. Remember you are responsible of maintaining this software stack yourself.

Some config options require a web content to be served. For example :

Changing Element Web appearance with custom background pictures.
Providing a HomePage for display in Element Web.
Providing a Guide PDF from your server in an airgapped environment.

One way to provide this content is to run a web server in the same Kubernetes Cluster as the Element Enterprise
Suite.

Please consider other options before installing and maintaining just another webserver for this.

Consider to use an existing web server 1st.

The following guide describes the steps to setup the Bitnami Apache helm chart in the Standalone Microk8s
cluster setup by Element Server Suite..

a DNS entry pages.BASEDOMAIN.
a Certificate (private key + certificate) for pages.BASEDOMAIN
an installed standalone Element Server Suite setup
access to the server on the command line

a web server that runs in the mircok8s cluster
a directory /var/www/apache-content to place and modify web content like homepage, backgrounds
and guides.

You can deploy a Webserver to the same Kubernetes cluster that Element Server Suite is using. This guide is
applicable to the Single Node deployment of Element Server Suite but can be used for guidance on how to host a
webserver in other Kubernetes Clusters as well.

You can use any webserver that you like, in this example we will user the Bitnami Apache chart.

We need helm version 3. You can follow this Guide or ask microk8s to install helm3.

How to run a Webserver on
Standalone Deployments

You need:

You get:

https://helm.sh/docs/intro/install/


Let's check if it is working

Create and Alias for helm

Add the bitnami repository

Update the repo information

Create a directory to supply content :

Enabling Helm3 with microk8s
$ microk8s enable helm3
Infer repository core for addon helm3
Enabling Helm 3
Fetching helm version v3.8.0.
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 12.9M  100 12.9M    0     0  17.4M      0 --:--:-- --:--:-- --:--:-- 17.4M
Helm 3 is enabled

$ microk8s.helm3 version
version.BuildInfo{Version:"v3.8.0", GitCommit:"d14138609b01886f544b2025f5000351c9eb092e", 
GitTreeState:"clean", GoVersion:"go1.17.5"}

echo alias helm=microk8s.helm3 >> ~/.bashrc
source ~/.bashrc

Enable the Bitnami Helm Chart repository

helm repo add bitnami https://charts.bitnami.com/bitnami

helm repo update

Prepare the Web-Server Content



Put your content e.g. a homepage into the apache-content directory.

There are multiple ways to provide this content to the apache pod. The bitnami helm chart user ConfigMaps,
Physical Volumes or a Git Repository.

ConfigMaps are a good choice for smaller amounts of data. There is a hard limit of 1MiB on ConfigMaps. So if all
your data is not more that 1MiB, the config map is a good choice for you.

Physical Volumes are a good choice for larger amounts of data. There are several choices for backing storage
available. In the context of the standalone deployments of ESS a Physical Hostpath is the most practical.
HostPath is not a good solution for mutli node k8s clusters, unless you pin a pod to a certain node. Pinning the
pod to a single node would put the workload at risk, should that node go down.

Git Repository is a favourite as it versions the content and you track and revert to earlier states easily. The
bitnami apache helm chart is built in a way that updates in regular intervals to your latest changes.

We are selecting the Physical Volume option to serve content in this case. Our instance of Microk8s comes with
the Hostpath storage addon enabled.

Define the physical volume:

Apply to the cluster

sudo mkdir /var/www/apache-content

cp /tmp/background.jpg /apache-content/
cp /tmp/home.html ~element/apache-content/

cat <<EOF>pv-volume.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
  name: apache-content-pv
  labels:
    type: local
spec:
  storageClassName: microk8s-hostpath
  persistentVolumeReclaimPolicy: Retain
  capacity:
    storage: 100Mi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: "/var/www/apache-content"
EOF

https://raw.githubusercontent.com/LutzLange/homepage/main/home.html


Next we need a Physical Volume Claim:

Apply to the cluster to create the pvc

We need to add configurations to adjust the apache deployment to our needs. The K8s service should be
switched to ClusterIP. The Single Node deployment includes an Ingress configuration through nginx that we can
use to route traffic to this webserver. The name of the ingressClass is "public". We will need to provide a
hostname. This name needs to be resolvable through DNS. This could be done through the wildcard entry for
*.$BASEDOMAIN that you might already have. You will need a certificate and certificate private key to secure this
connection through TLS.

The full list of configuration options of this chart is explained in the bitnami repository here

Create a file called apache-values.yml in the home directory of your element user directory.

Remember to replace BASEDOMAIN with the correct value for your deployment.

kubectl apply -f pv-volume.yaml

cat <<EOF>pv-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: apache-content-pvc
spec:
  volumeName: apache-content-pv
  storageClassName: microk8s-hostpath
  accessModes: [ReadWriteOnce]
  resources: { requests: { storage: 100Mi } }
EOF

kubectl apply -f pv-claim.yaml

Configure the Helm Chart

cat <<EOF>apache-values.yaml
service:
  type: ClusterIP
ingress:
  enabled: true

https://github.com/bitnami/charts/blob/main/bitnami/apache/README.md#deploying-a-custom-web-application.


Now we are ready to deploy the apache helm chart

List the deployed helm charts:

Get more details:

  ingressClassName: "public"
  hostname: pages.BASEDOMAIN
htdocsPVC: apache-content-pvc
EOF

Deploy the Apache Helm Chart

helm install myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Manage the deployment

$ helm list 
NAME      	NAMESPACE	REVISION	UPDATED                                	STATUS  	CHART        	APP VERSION
myhomepage	default  	1       	2023-09-06 14:46:33.352124975 +0000 UTC	deployed	apache-10.1.0	2.4.57     

$ helm status myhomepage
NAME: myhomepage
LAST DEPLOYED: Wed Sep  6 14:46:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
CHART NAME: apache
CHART VERSION: 10.1.0
APP VERSION: 2.4.57

** Please be patient while the chart is being deployed **

1. Get the Apache URL by running:



If you need to update the deployment, modify the required apache-values.yaml and run :

If you don't want the deployment any more, you can remove it.

If you are in a connected environment, you can rely on cert-manager to create certificates and secrets for you.

If you have cert-manager enabled. You will just need to add the right annotations to the ingress of your
deployment. Modify you apache-values.yaml and add these lines to the ingress block :

You will need to upgrade your deployment to reflect these changes:

There are situations in which you want custom certificates instead. These can be used by modifying your apache-
values.yaml. Add the following lines to the ingress block in the apache-values.yaml. Take care to get the
indentation right. Replace the ... with your data.

  You should be able to access your new Apache installation through:
      - http://pages.lutz-gui.sales-demos.element.io

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

helm uninstall myhomepage

Secure the deployment with certificates

Cert-manager with letsencrypt

  tls: true
  annotations: 
    cert-manager.io/cluster-issuer: letsencrypt
    kubernetes.io/ingress.class: public

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Custom Certificates

  tls: true
  extraTls:
  - hosts:



You will need to upgrade your deployment to reflect these changes:

You can make your life easier by using bash completing and an alias for kubectl. You will need to have the bash-
completion package installed as a prerequisite.

For all users on the system:

Set an aias for kubectl for your user:

Enable auto-completion for your alias

After reloading your Shell, you can now enjoy auto completion for your k ( kubectl ) commands.

    - pages.lutz-gui.sales-demos.element.io
    secretName: "pages.lutz-gui.sales-demos.element.io-tls"
  secrets:
    - name: pages.lutz-gui.sales-demos.element.io-tls
      key: |-
        -----BEGIN RSA PRIVATE KEY-----
        ...
        -----END RSA PRIVATE KEY-----
      certificate: |-
        -----BEGIN CERTIFICATE-----
        ...
        -----END CERTIFICATE-----

helm upgrade myhomepage -f apache-values.yaml oci://registry-1.docker.io/bitnamicharts/apache

Tips and Tricks

kubectl completion bash | sudo tee /etc/bash_completion.d/kubectl > /dev/null

echo 'alias k=kubectl' >>~/.bashrc

echo 'complete -o default -F __start_kubectl k' >>~/.bashrc

Revision #12
Created 11 August 2023 10:24:30 by Lutz Lange
Updated 6 November 2024 13:20:21 by Kieran Mitchell Lane


