
Synapse Section: Workers
The Workers section, which allows you to configure Synape Workers, is available under the 'Advanced' section
of the Synapse page.

What are Synapse Workers

Synapse is built on Python, an inherent limitation of which is only being able to execute one thread at a time (due
to the GIL). To allow for horizontal scaling Synapse is built to split out functionality into multiple separate python
processes. While for small instances it is recommended to run Synapse in the default monolith mode, for larger
instances where performance is a concern it can be helpful to split out functionality into these separate
processes, called Workers.

Without Workers
With Workers

For a detailed high-level overview of workers, see the How we fixed Synapse's Scalability blogpost.

Benefits of Using Workers

1. Scalability. By distributing tasks across multiple processes, Synapse can handle more concurrent
operations and better utilize system resources.

2. Fault Isolation. If a specific worker crashes, it only affects the functionality it handles, rather than
bringing down the entire server.

3. Performance Optimisation. By dedicating workers to specific high-demand tasks, you can improve
the overall performance by removing bottlenecks.

https://element-hq.github.io/synapse/latest/workers.html
https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1716452654968.png
https://ems-docs.element.io/uploads/images/gallery/2024-05/image-1716452624815.png
https://matrix.org/blog/2020/11/03/how-we-fixed-synapse-s-scalability/

Worker ? Synapse Communication

The separat Worker processes communicate with each other via a Synapse-specific protocol called 'replication'
(analogous to MySQL- or Postgres-style database replication) which feeds streams of newly written data between
processes so they can be kept in sync with the database state.

Synapse uses a Redis pub/sub channel to send the replication stream between all configured Synapse
processes. Additionally, processes may make HTTP requests to each other, primarily for operations which need
to wait for a reply ? such as sending an event.

All the workers and the main process connect to Redis, which relays replication commands between processes
with Synapse using it as a shared cache and as a pub/sub mechanism.

How to configure

Click on Add Workers

https://ems-docs.element.io/uploads/images/gallery/2023-06/image-1687357253633.png
https://ems-docs.element.io/uploads/images/gallery/2023-06/image-1687357284426.png

You have to select a Worker Type. Here are the workers which can be useful to you :

Pushers.
If you experience slowness with notifications sending to clients
Client-Reader.
If you experience slowness when clients login and sync their chat rooms
Synchrotron.
If you experience slowness when rooms are active
Federation-x.
If you are working in a federated setup, you might want to dedicate federation to workers.

If you are experiencing resources congestion, you can try to reduce the resources requested by each worker. Be
aware that

If the node gets full of memory, it will try to kill containers which are consuming more than what they
requested
If a container consumes more than its memory limit, it will be automatically killed by the node, even if
there is free memory left.

You will need to re-run the installer after making these changes for them to take effect.

Worker Types

The ESS Installer has a number of Worker Types, see below for a breakdown of what they are and how they
work.

Appservice

Purpose. Handles interactions with Application Services (appservices) which are third-party
applications integrated with the Matrix ecosystem.
Functions. Manages the sending and receiving of events to/from appservices, such as bots or bridges
to other messaging systems.

Background

Purpose. Executes background tasks that are not time-sensitive and can be processed
asynchronously.
Functions. Includes tasks like database cleanups, generating statistics, and running periodic
maintenance jobs.

Client Reader

Purpose. Serves read requests from clients, which typically includes retrieving room history and state.
Functions. Offloads read-heavy operations from the main process to improve performance and
scalability.

Encryption

Purpose. Manages encryption-related tasks, ensuring secure communication between clients.

Functions. Handles encryption and decryption of messages, key exchanges, and other cryptographic
operations.

Event Creator

Purpose. Responsible for creating new events, such as messages or state changes within rooms.
Functions. Handles the generation and initial processing of events before they are persisted in the
database.

Event Persister

Purpose. Handles the storage of events in the database.
Functions. Ensures that events are correctly and efficiently written to the storage backend.

Federation Inbound

Purpose. Manages incoming federation traffic from other Matrix homeservers.
Functions. Handles events and transactions received from federated servers, ensuring they are
processed and integrated into the local server’s state.

Federation Reader

Purpose. Serves read requests related to federation.
Functions. Manages queries and data retrieval requests that are part of the federation protocol,
improving performance for federated operations.

Federation Sender

Purpose. Handles outgoing federation traffic to other Matrix homeservers.
Functions. Manages sending events and transactions to federated servers, ensuring timely and
reliable delivery.

Initial Synchrotron

Purpose. Provides the initial sync for clients when they first connect to the server or after a long period
of inactivity.
Functions. Gathers the necessary state and history to bring the client up to date with the current room
state.

Media Repository

Purpose. Manages the storage and retrieval of media files (images, videos, etc.) uploaded by users.
Functions. Handles media uploads, downloads, and caching to improve performance and scalability.

Presence Writer

Purpose. Manages user presence updates (e.g., online, offline, idle).

Functions. Ensures that presence information is updated and propagated to other users and servers
efficiently.

Pusher

Purpose. Manages push notifications for users.
Functions. Sends notifications to users about new events, such as messages or mentions, to their
devices.

Receipts Account

Purpose. Handles read receipts from users indicating they have read certain messages.
Functions. Processes and stores read receipts to keep track of which messages users have
acknowledged.

Sso Login

Purpose. Manages Single Sign-On (SSO) authentication for users.
Functions. Handles authentication flows for users logging in via SSO providers.

Synchrotron

Purpose. Handles synchronization (sync) requests from clients.
Functions. Manages the process of keeping clients updated with the latest state and events in real-
time or near real-time.

Typing Persister

Purpose. Manages typing notifications from users.
Functions. Ensures typing indicators are processed and stored, and updates are sent to relevant
clients.

User Dir

Purpose. Manages the user directory, which allows users to search for other users on the server.
Functions. Maintains and queries the user directory, improving search performance and accuracy.

Frontend Proxy

Purpose. Acts as a reverse proxy for incoming HTTP traffic, distributing it to the appropriate worker
processes.
Functions. Balances load and manages connections to improve scalability and fault tolerance.

Revision #6
Created 7 May 2024 08:19:16 by Kieran Mitchell Lane
Updated 23 May 2024 10:53:30 by Kieran Mitchell Lane

