
Getting Started with the Enterprise Helm
Charts

Introduction

This document will walk you through how to get started with our Element Server Suite Helm Charts. These charts
are provided to be used in environments which typically deploy applications by helm charts. If you are unfamiliar
with helm charts, we'd highly recommend that you start with our Enterprise Installer.

General concepts

ESS deployment rely on the following components to deploy the workloads on a kubernetes cluster :

1. Updater : It reads an ElementDeployment CRD manifest, and generates the associated individual
Element CRDs manifests linked together

2. Operator : It reads the individual Element CRDs manifests to generates the associated kubernetes
workloads

3. ElementDeployment : This CRD is a simple structure following the pattern :

spec:
 global:
 k8s:
 # Global settings that will be applied by default to all workloads if not forced locally. This is where you will be
able to configure a default ingress certificate, default number of replicas on the deployments, etc.
 config:
 # Global configuration that can be used by every element component
 secretName: # The global secret name. Required secrets keys can be found in the description of this field
using `kubectl explain`. Every config named `<foo>SecretKey` will point to a secret key containing the secret
targetted by this secret name.
 components:
 <component name>:
 k8s:
 # Local kubernetes configuration of this component. You can override here the global values to force a
certain behaviour for each components.

Any change to the ElementDeployment manifest deployed in the namespace will trigger a reconciliation loop.
This loop will update the Element manifests read by the Operator. It will again trigger a reconciliation loop in the
Operator process, which will update kubernetes workloads accordingly.

If you manually change a workload, it will trigger a reconciliation loop and the Operator will override your change
on the workload.

The deployment must be managed only through the ElementDeployment CRD.

Installing the Operator and the Updater
helm charts

We advise you to deploy the helm charts in one of the deployments model :

1. Cluster-Wide deployment : In this mode, the CRDs Conversion Webhook and the controller managers
are deployed in their own namespace, separated from ESS deployments. They are able to manage
ESS deployments in any namespace of the cluster The install and the upgrade of the helm chart
requires cluster admin permissions.

2. Namespace-scoped deployment : In this mode, only the CRDs conversion webhooks require cluster
admin permissions. The Controller managers are deployed directly in the namespace of the element
deployment. The install and the upgrade of ESS does not require cluster admin permissions if the
CRDs do not change.

All-in-one deployment (Requires cert-manager)

When cert-manager is present in the cluster, it is possible to use the all-in-one ess-system helm chart to deploy
the operator and the updater.

First, let's add the ess-system repository to helm, replace ems_image_store_username and
ems_image_store_token with the values provided to you by Element.

 config:
 # This component configuration
 secretName: # The component secret name containing secret values. Required secrets keys can be found in
the description of this field using `kubectl explain`. Every config named `<foo>SecretKey` will point to a secret
key containing the secret targetted by this secret name.
 <another component>:
 ...

Cluster-wide deployment

When deploying ESS-System as a cluster-wide deployment, updating ESS requires ClusterAdmin permissions.

Create the following values file :

Namespace-scoped deployment

When deploying ESS-System as a namespace-scoped deployment, you have to deploy ess-system in two parts :

1. One for the CRDs and the conversion webhooks. This part will be managed with ClusterAdmin
permissions. These update less often.

2. One for the controller managers. This part will be managed with namespace-scoped permissions.

In this mode, the ElementDeployment CR is deployed in the same namespace as the controller-managers.

Create the following values file to deploy the CRDs and the conversion webhooks :

helm repo add ess-system https://registry.element.io/helm/ess-system --username
<ems_image_store_username> --password '<ems_image_store_token>'

emsImageStore:
 username: <username>
 password: <password>

element-operator:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

element-updater:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

emsImageStore:
 username: <username>
 password: <password>

Create the following values file to deploy the controller managers in their namespace :

Without cert-manager present on the cluster

First, let's add the element-updater and element-operator repositories to helm, replace
ems_image_store_username and ems_image_store_token with the values provided to you by Element.

element-operator:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: false # Deploys the controller managers

element-updater:
 clusterDeployment: true
 deployCrds: true # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: false # Deploys the controller managers

emsImageStore:
 username: <username>
 password: <password>

element-operator:
 clusterDeployment: false
 deployCrds: false # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

element-updater:
 clusterDeployment: false
 deployCrds: false # Deploys the CRDs and the Conversion Webhooks
 deployCrdRoles: false # Deploys roles to give permissions to users to manage specific ESS CRs
 deployManager: true # Deploys the controller managers

helm repo add element-updater https://registry.element.io/helm/element-updater --username
<ems_image_store_username> --password '<ems_image_store_token>'

Now that we have the repositories configured, we can verify this by:

and should see the following in that output:

N.B. This guide assumes that you are using the element-updater and element-operator namespaces. You can
call it whatever you want and if it doesn't exist yet, you can create it with: kubectl create ns <name> .

Generating an image pull secret with EMS credentials

To generate an ems-credentials to be used by your helm chart deployment, you will need to generate an
authentication token and palce it in a secret.

Generating a TLS secret for the webhook

The conversion webhooks need their own self-signed CA and TLS certificate to be integrated into kubernetes.

For example using easy-rsa :

Create a secret for each of these two certificates :

helm repo add element-operator https://registry.element.io/helm/element-operator --username
<ems_image_store_username> --password '<ems_image_store_token>'

helm repo list

NAME URL
element-operator https://registry.element.io/helm/element-operator
element-updater https://registry.element.io/helm/element-updater

kubectl create secret -n element-updater docker-registry ems-credentials --docker-server=registry.element.io --
docker-username=<EMSusername> --docker-password=<EMStoken>`
kubectl create secret -n element-operator docker-registry ems-credentials --docker-server=registry.element.io --
docker-username=<EMSusername> --docker-password=<EMStoken>`

easyrsa init-pki
easyrsa --batch "--req-cn=ESS-CA`date +%s`" build-ca nopass
easyrsa --subject-alt-name="DNS:element-operator-conversion-webhook.element-operator"\
 --days=10000 \
 build-server-full element-operator-conversion-webhook nopass
easyrsa --subject-alt-name="DNS:element-updater-conversion-webhook.element-updater"\
 --days=10000 \
 build-server-full element-updater-conversion-webhook nopass

Installing the helm chart for the element-updater and the element-
operator

Create the following values file to deploy the controller managers in their namespace :

values.element-operator.yml :

values.element-updater.yml :

Run the helm install command :

kubectl create secret tls element-operator-conversion-webhook --cert=pki/issued/element-operator-conversion-
webhook.crt --key=pki/private/element-operator-conversion-webhook.key --namespace element-operator
kubectl create secret tls element-updater-conversion-webhook --cert=pki/issued/element-updater-conversion-
webhook.crt --key=pki/private/element-updater-conversion-webhook.key --namespace element-updater

clusterDeployment: true
deployCrds: true # Deploys the CRDs and the Conversion Webhooks
deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
deployManager: true # Deploys the controller managers
crds:
 conversionWebhook:
 caBundle: # Paste here the content of `base64 pki/ca.crt -w 0`
 tlsSecretName: element-operator-conversion-webhook
 imagePullSecret: ems-credentials
operator:
 imagePullSecret: ems-credentials

clusterDeployment: true
deployCrds: true # Deploys the CRDs and the Conversion Webhooks
deployCrdRoles: true # Deploys roles to give permissions to users to manage specific ESS CRs
deployManager: true # Deploys the controller managers
crds:
 conversionWebhook:
 caBundle: # Paste here the content of `base64 pki/ca.crt -w 0`
 tlsSecretName: element-updater-conversion-webhook
updater:
 imagePullSecret: ems-credentials

Now at this point, you should have the following 4 containers up and running:

Generating the ElementDeployment CR
to Deploy Element Server Suite

Using the ess-stack helm-chart

The ess-stack helm chart is available in the ess-system repository :

It will deploy an ElementDeployment CR and its associated secrets from the chart values file.

The values file will contain the following structure :

Available Components & Global settings can be found under https://ess-schemas-docs.element.io
For each SecretKey variable, the value will point to a secret key under secrets . For example,
components.synapse.config.macaroonSecretKey is macaroon , so a macaroon secret must exists

under secrets.synapse.content .

You can see a demo at the starter-edition open source repository

helm install element-operator element-operator/element-operator --namespace element-operator -f values.yaml
helm install element-updater element-updater/element-updater --namespace element-updater -f values.yaml

[user@helm ~]$ kubectl get pods -n element-operator
NAMESPACE NAME READY STATUS RESTARTS AGE
element-operator element-operator-controller-manager-c8fc5c47-nzt2t 2/2 Running 0 6m5s
element-operator element-operator-conversion-webhook-7477d98c9b-xc89s 1/1 Running 0
6m5s
[user@helm ~]$ kubectl get pods -n element-updater
NAMESPACE NAME READY STATUS RESTARTS AGE
element-updater element-updater-controller-manager-6f8476f6cb-74nx5 2/2 Running 0 106s
element-updater element-updater-conversion-webhook-65ddcbb569-qzbfs 1/1 Running 0 81s

helm repo add ess-system https://registry.element.io/helm/ess-system --username
<ems_image_store_username> --password '<ems_image_store_token>'

https://ess-schemas-docs.element.io
https://github.com/element-hq/ess-starter-edition-core/tree/main/helm/easy-setup

emsImageStore:
 username: <username>
 password: <password>

secrets:
 global:
 content:
 genericSharedSecret: # generic shared secret
 synapse:
 content:
 macaroon: # macaroon
 postgresPassword: # postgres password
 registrationSharedSecret: # registration shared secret

 # globalOptions contains the global properties of the ELementDeployment CRD
globalOptions:
 config:
 domainName: # your base domain
 k8s:
 ingresses:
 tls:
 mode: certmanager
 certmanager:
 issuer: letsencrypt
 workloads:
 replicas: 1

components:
 elementWeb:
 k8s:
 ingress:
 fqdn: # element web fqdn
 synapse:
 config:
 media:
 volume:
 size: 5Gi
 postgresql:

Writing your own ElementDeployment CR

Here is a small sample to deploy the basic components using your own certificate files. This is provided as an
example, as ElementDeployment supports a whole range of configuration option that you can explore in :

The documentation website at https://ess-schemas-docs.element.io
the GUI
through kubectl explain command : kubectl explain
elementdeployment.matrix.element.io.spec.components

 database: # postgres database
 host: # postgres host
 port: 5432
 user: # postgres user
 k8s:
 ingress:
 fqdn: # synapse fqdn
 wellKnownDelegation:
 config: {}
 k8s: {}

apiVersion: matrix.element.io/v1alpha1
kind: ElementDeployment
metadata:
 name: <element_deployment_name>
 namespace: <target namespace>
spec:
 global:
 k8s:
 ingresses:
 ingressClassName: "public"
 workloads:
 dockerSecrets:
 - name: dockerhub
 url: docker.io
 - name: element-registry
 url: registry.element.io
 storage:
 storageClassName: "standard"

https://ess-schemas-docs.element.io

 secretName: global
 config:
 genericSharedSecretSecretKey: genericSharedSecret
 domainName: "deployment.tld"
 components:
 elementWeb:
 secretName: external-elementweb-secrets
 k8s:
 ingress:
 tls:
 mode: certfile
 certificate:
 certFileSecretKey: eleweb.tls
 privateKeySecretKey: eleweb.crt
 fqdn: element-web.tld
 synapse:
 secretName: external-synapse-secrets
 config:
 maxMauUsers: 100
 media:
 volume:
 size: 1
 postgresql:
 host: "<postgresql server>"
 user: "<user>"
 database: "<db>"
 passwordSecretKey: pgpassword
 sslMode: disable
 k8s:
 ingress:
 fqdn: synapse.tld
 tls:
 mode: certfile
 certificate:
 certFileSecretKey: synapse.tls
 privateKeySecretKey: synapse.crt
 wellKnownDelegation:
 secretName: external-wellknowndelegation-secrets
 k8s:
 ingress:

To inject secret values in the CR, you will have to create the following secrets :

name: global with data key genericSharedSecret containing any random value. It will be used as a
seed for all secrets generated by the updater.
name: external-elementweb-secrets with data keys eleweb.tls containing element web private key and
eleweb.crt containing element web certificate.
name: external-synapse-secrets with data keys synapse.tls containing synapse private key and
synapse.crt containing synapse certificate. You will also need pgpassword with the postgres

password. All attributes pointing to Secret Keys have a default value, and in this example we are
relying on the default values of config.macaroonSecretKey : macaroon ,
config.registrationSharedSecretSecretKey : registrationSharedSecret , config.signingKeySecretKey :
signingKey and the config.adminPasswordSecretKey pointing to adminPassword in the secret key.
name: external-wellknowndelegation-secrets with data keys wellknown.tls containing well known

delegation private key and wellknown.crt containing well known delegation certificate.

Once the CRD and the Secrets deployed to the namespace, the Updater will be able to create all the resources
handled by the Operator, which will then deploy the workloads on your kubernetes cluster.

Loading docker secrets into kubernetes in
preparation of deployment

N.B. This guide assumes that you are using the element-onprem namespace for deploying Element. You can
call it whatever you want and if it doesn't exist yet, you can create it with: kubectl create ns element-onprem .

Now we need to load secrets into kubernetes so that the deployment can access them. If you built your own CRD
from scratch, you will need to follow our Element Deployment CRD documentation.

Checking deployment progress

To check on the progress of the deployment, you will first watch the logs of the updater:

 tls:
 mode: certfile
 certificate:
 certFileSecretKey: wellknown.tls
 privateKeySecretKey: wellknown.crt

kubectl create secret -n element-onprem docker-registry ems-image-store --docker-server=registry.element.io --
docker-username=<EMSusername> --docker-password=<EMStoken>

kubectl logs -f -n element-updater element-updater-controller-manager-<rest of pod name>

You will have to tab complete to get the correct hash for the element-updater-controller-manager pod name.

Once the updater is no longer pushing out new logs, you can track progress with the operator or by watching
pods come up in the element-onprem namespace.

Operator status:

Watching reconciliation move forward in the element-onprem namespace:

Watching pods come up in the element-onprem namespace:

kubectl logs -f -n element-operator element-operator element-operator-controller-manager-<rest of pod name>

kubectl get elementdeployment -o yaml | grep dependentCRs -A20 -n element-onprem -w

kubectl get pods -n element-onprem -w

Revision #22
Created 12 July 2023 17:47:38 by Karl Abbott
Updated 27 August 2024 08:24:03 by Gaël Goinvic

