
Introduction to Element Server Suite

Kubernetes Installations

Kubernetes Installations - Quick Start

Single Node Installations

Single Node Installs: Storage and Backup Guidelines

Using the Installer in an Air-Gapped Environment

Troubleshooting

Setting up Permalinks With the Installer

Setting Up Well Known Delegation

Setting up Delegated Authentication With the Installer

Integrations and Add-Ons

Setting Up Jitsi and TURN With the Installer

Setting up Group Sync with the Installer

Setting up GitLab, GitHub, JIRA and Webhooks Integrations With the Installer

Setting up Adminbot and Auditbot

Setting Up Hydrogen

Setting up On-Premise Metrics

Setting Up the Telegram Bridge

Setting Up the Teams Bridge

Setting Up the IRC Bridge

Setting Up the SIP Bridge

Setting Up the XMPP Bridge

Setting up Location Sharing

Removing Legacy Integrations

Support Policies

On-Premise Support Scope of Coverage

Single Node Scope of Coverage Addendum

Archived Documentation Repository

Element On-Premise
Documentation

Documentation Covering Installer 2023-02.02 CLI Only.

Documentation Covering Installers From 2022.10.01 to 2023.02.01

Documentation Covering Installers From 2022.07.03 to 2022.09.05

Documentation covering v1 and installers prior to 2022-07.03

Appendices

Appendix A: Preparing Element Server Suite PoC

Migration from self-hosted to ESS On-Premise

Configuring Synapse workers

Setting up Delegated Authentication with LDAP on Windows AD

Setting up Delegated Authentication with OpenID on Microsoft Azure

Setting up Delegated Authentication with OpenID on Microsoft AD FS

Element Server Suite provides an enterprise-grade secure communications platform that can be either self-
hosted by you or run fully managed in our Element Cloud. Element Server Suite includes the Element Matrix
Server, which provides a host of security and privacy features, including:

Built on the Matrix open communications standard.
Provides end to end encrypted messaging, voice, and video through a consumer style messenger with
the power of a collaboration tool.
Delivers data sovereignty.
Affords a high degree of flexibility that can be tailored to many use cases.
Allows secure federation within a single organisation or across a supply chain or ecosystem.

and combines them with the following Element Server Extensions:

Group Sync: Synchronize group data from your identity provider and map these into Element spaces.
Adminbot: Give your server administrator the ability to be admin in any rooms on your homeserver.
Auditbot: Have an auditable record of conversations conducted on your homeserver.
Security and feature updates: Updates are easy to deploy and handled by our installer.
Bridges: Bridge to IRC, XMPP, Telegram, Microsoft Teams, or SIP. More coming soon.

Further, we also offer Enterprise Support, giving you access to the experts in federated, secure communications
giving you confidence to deploy our platform for your most critical secure communications needs.

Given the flexibility afforded by this platform, there are a number of moving parts to configure.

Element runs cloud based infrastructure built on Amazon Web Services for the purpose of hosting Element
Server Suite for our customers. If you go with this option, we will manage setting up, configuring, and maintaining
your Element Server Suite instance.

For more information, please see: How to Get an EMS Server.

Element Enterprise On-Premise can be deployed both to Kubernetes (a lightweight container orchestration
platform) or a standalone server. One key benefit of going with Kubernetes is that you can add more resources
and nodes to a cluster as you need them where you are capped at one node with our standalone server. In the
case of our standalone server installation, we deploy microk8s (a smaller lightweight distribution of Kubernetes),
which we then use for deploying our application.

Introduction to Element Server Suite

What is Element Server Suite?

Prefer a fully managed deployment in
Element's Cloud?

Deploying to Kubernetes or to a
standalone server?

https://ems-docs.element.io/books/element-cloud-documentation/page/how-to-get-an-ems-server

In general, regardless of if you pick the standalone server or Kubernetes deployment, you will need a base level
of hardware to support the application.

For scenarios that utilise open federation, Element recommends a minimum of 6 vCPUs/CPUs and 16GB ram
for the host(s) running synapse pods.

For scenarios that utilise closed federation, Element recommends a minimum of 4 vCPUs/CPUs and 8GB ram
for the host(s) running synapse pods.

On kubernetes installations, we default to 2 replicas of every service that you install. This can quickly increase the
required number of CPUs, so be very mindful that right out of the box, you could need up to 16 vCPUs and
adding more integrations and add-ons could increase this number even further.

This document gives an overview of our secure communications platform architecture:

(Please click on the image to view it at 100%.)

Comprising our secure communications platform are the following components:

synapse : The homeserver itself.
element-web : The Element Web client.
integrator: Our integration manager.
synapse admin ui : Our Element Enterprise Administrator Dashboard.
postgresql (Optional) : Our database. Only optional if you already have a separate PostgreSQL
database, which is required for a multiple node setup.
groupsync (Optional) : Our group sync software

Hardware Requirements

Architecture

https://ems-docs.element.io/uploads/images/gallery/2022-07/matrix-architecture-generic-kubernetes-deployment.png

adminbot (Optional) : Our bot for admin tasks.
auditbot (Optional) : Our bot that provides auditability.
hookshot (Optional) : Our integrations with gitlab, github, jira, and custom webhooks.
hydrogen (Optional) : A light weight alternative chat client.
jitsi (Optional) : Our VoIP platform for group conferencing.
coturn (Optional) : TURN server. Required if deploying VoIP.
prometheus (Optional) : Provides metrics about the application and platform.
grafana (Optional) : Graphs metrics to make them consumable.
telegram bridge (Optional) : Bridge to connect Element to Telegram.
teams bridge (Optional) : Bridge to connect Element to MS Teams.
xmpp bridge (Optional) : Bridge to connect Element to XMPP.
irc bridge (Optional) : Bridge to connect Element to IRC.
sip bridge (Optional) : Bridge to connect Element to SIP.

For each of the components in this list (excluding postgresql, groupsync, adminbot, auditbot, and prometheus),
you must provide a hostname on your network that meets this criteria:

Fully resolvable to an IP address that is accessible from your clients.
Signed PEM encoded certificates for the hostname in a crt/key pair. Certificates should be signed by
an internet recognised authority, an internal to your company authority, or LetsEncrypt.

It is possible to deploy Element Enterprise On-Premise with self-signed certificates and without proper DNS in
place, but this is not ideal as the mobile clients and federation do not work with self-signed certificates.

Information on how to use self-signed certificates and hostname mappings instead of DNS can be found in How

to Setup Local Host Resolution Without DNS

In addition to hostnames for the above, you will also need a hostname and PEM encoded certificate key/cert pair
for your base domain. If we were deploying a domain called example.com and wanted to deploy all of the
software, we would have the following hostnames in our environment that needed to meet the above criteria:

example.com (base domain)
synapse.example.com (homeserver)
element.example.com (element web)
integrator.example.com (integration manager)
admin.example.com (admin dashboard)
hookshot.example.com (Our integrations)
hydrogen.example.com (Our light weight chat client)
jitsi.example.com (Our VoIP platform)
coturn.example.com (Our TURN server)
grafana.example.com (Our Grafana server)
telegrambridge.example.com (Our Telegram Bridge)
teamsbridge.example.com (Our Teams Bridge)

As mentioned above, this list excludes postgresql, groupsync, adminbot, auditbot, and prometheus.

Wildcard certificates do work with our application and it would be possible to have a certificate that validated
*.example.com and example.com for the above scenario. It is key to do both the base domain and the wildcard in
the same certificate in order for this to work.

Further, if you want to do voice or video across network boundaries (ie: between people not on the same local
network), you will need a TURN server. If you already have one, you do not have to set up coturn. If you do not
already have a TURN server, you will want to set up coturn (our installer can do this for you) and if your server is
behind NAT, you will need to have an external IP in order for coturn to work.

https://ems-docs.element.io/books/ems-knowledge-base/page/how-to-setup-local-host-resolution-without-dns
https://ems-docs.element.io/books/ems-knowledge-base/page/how-to-setup-local-host-resolution-without-dns

If you are going to be installing into an airgapped environment (one without internet connectivity), you will need to
also download the airgapped installer, which is ~4GB of data that will need to be transferred to your airgapped
environment. More information on this can be found in our airgapped installation documentation here:

https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-installer-in-an-air-gapped-

environment

To obtain our software, please visit our downloads page at: https://ems.element.io/on-premise/download

For an installation into a kubernetes environment, make sure you have a Kubernetes platform deployed that you

have access to and head over to Kubernetes Installations

For a standalone installation, please note that we support these on the following platforms:

Ubuntu Server 20.04
Enterprise Linux 8 (RHEL, CentOS Stream, etc.)

Once you have a server with one of these installed, please head over to Single Node Installations

Installation

Airgapped Environments

Software

Kubernetes Application (Multiple
Nodes)

Standalone (Single Node)

https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-installer-in-an-air-gapped-environment
https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-installer-in-an-air-gapped-environment
https://ems.element.io/on-premise/download
https://ems-docs.element.io/books/element-enterprise-on-premise-documentation/page/kubernetes-installations
https://ems-docs.element.io/books/element-enterprise-on-premise-documentation/page/single-node-installations

Our Installer can handle the installation of Element Enterprise into your existing production kubernetes (k8s)
environment.

Before beginning the installation, there are a few things that must be prepared to ensure a successful deployment
and functioning installation.

The installer needs python3, pip3 and python3-venv installed to run.

The installer uses your currently active kubectl context which can be determined with kubectl config
current-context - make sure this is the correct context as all subsequent operations will be performed under
this.

More information on configuring this can be found in the upstream kubectl docs

Be sure to export K8S_AUTH_CONTEXT=<kube context name> for the Installer if you need to use a context aside
from your currently active one.

Before you can begin with the installation you must have a PostgreSQL database instance available. The installer
does not manage databases itself.

The database you use must be set to a locale of C and use UTF8 encoding - see https://matrix-

org.github.io/synapse/latest/postgres.html#set-up-database for further details as they relate to Synapse. If the
locale / encoding are incorrect, Synapse will fail to initialize the database and get stuck in a CrashLoopBackoff
cycle.

Please make note of the database hostname, database name, user, and password as you will need these to
begin the installation.

For testing and evaluation purposes, you can deploy PostgreSQL to k8s before you begin the installation process

- see Kubernetes Installations - Quick Start - Deploying PostgreSQL to Kubernetes for more information.

Kubernetes Installations

Overview

Prerequisites

Python environment

Kubectl environment

PostgreSQL

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-context-and-configuration
https://matrix-org.github.io/synapse/latest/postgres.html#set-up-database
https://matrix-org.github.io/synapse/latest/postgres.html#set-up-database
https://ems-docs.element.io/books/element-on-premise-documentation/page/kubernetes-installations-quick-start#Deploying%20PostgreSQL%20to%20Kubernetes

The installer does not manage cluster Ingress capabilities since this is typically a cluster-wide concern - You must
have this available prior to installation. Without a working Ingress Controller you will be unable to route traffic to
your services without manual configuration.

If you do not have an Ingress Controller deployed please see Kubernetes Installations - Quick Start - Deploying

ingress-nginx to Kubernetes for information on how to set up a bare-bones ingress-nginx installation to your
cluster.

If you have an Ingress Controller deployed already and it is set to the default class for the cluster, you shouldn't
have to do anything else.

If you're unsure you can see which providers are available in your cluster with the following command:

And you can check to see whether an IngressClass is set to default using kubectl, for example:

In this example cluster there is only an nginx IngressClass and it is already default, but depending on the cluster
you are deploying to this may be something you must manually set.

If you have previously used installer versions 2023-03.01 and earlier, you will need to run our migration script to
convert your previous configuration to the new format that is used with our UI based installer. This script became
available in 2023-03.02, so you must have at least that version or higher of the graphical installer for this to work.

Kubernetes Ingress Controller

Use an existing Ingress Controller

$ kubectl get IngressClass

NAME CONTROLLER PARAMETERS AGE

nginx k8s.io/ingress-nginx <none> 40d

$ kubectl describe IngressClass nginx

Name: nginx

Labels: app.kubernetes.io/component=controller

 app.kubernetes.io/instance=ingress-nginx

 app.kubernetes.io/managed-by=Helm

 app.kubernetes.io/name=ingress-nginx

 app.kubernetes.io/part-of=ingress-nginx

 app.kubernetes.io/version=1.1.1

 argocd.argoproj.io/instance=ingress-nginx

 helm.sh/chart=ingress-nginx-4.0.17

Annotations: ingressclass.kubernetes.io/is-default-class: true

Controller: k8s.io/ingress-nginx

Events: <none>

Migrating from our older installer

https://ems-docs.element.io/books/element-on-premise-documentation/page/kubernetes-installations-quick-start#Deploying%20ingress-nginx%20controller
https://ems-docs.element.io/books/element-on-premise-documentation/page/kubernetes-installations-quick-start#Deploying%20ingress-nginx%20controller

NOTE: Before running the migration script, we highly recommend that you take a backup or snapshot of
your working environment. While we have tested the migration script against several configurations at
this point, we have not tested for all of the combinations of configuration that the previous installer
allowed. We expect that migration will be a quick process for most customers, but in the event that
something goes wrong, you'll want to be able to get back to a known good state through a backup or
snapshot.

NB: If you are using group sync, you cannot presently migrate to the graphical installer. We are working
to address the issues with migrating group sync and will remove this note once we have those
addressed.

If you have not used our installer before, you may safely ignore this section.

To run the migration script, please do the following:

Make sure to replace ~/.element-onpremise-config with the path that your actual configuration exists in.
Further, replace YYYY-MM.VERSION with the appropriate tag for the installer you downloaded.

Once the import has finished, the GUI will start and you will be able to browse to the installer at one of the
provided URLs, much as if you had started the installer without doing a migration as detailed in the following
section.

Head to https://ems.element.io/on-premise/download and download the latest installer. The installer will be called
element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin . You will take this file and copy it to the

machine where you will be installing the Element Server Suite. Once you have this file on the machine in a
directory accessible to your sudo-enabled user, you will run:

chmod +x ./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin

replacing the YYYY-MM.VERSION with the appropriate tag for the installer you downloaded.

If you have multiple kubernetes clusters configured in your kubeconfig, you will have to export the
K8S_AUTH_CONTEXT variable before running the installer :

export K8S_AUTH_CONTEXT=<kube context name>

Once you have done this, you will run:

./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin

replacing the YYYY-MM.VERSION with the appropriate tag for the installer you downloaded, and this will start a web
server with the installer loaded.

You will see a message similar to:

chmod +x ./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin

./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin --import ~/.element-

onpremise-config

Beginning the Installation

https://ems.element.io/on-premise/download

At this point, you will need to open a web browser and browse to one of these IPs. You may need to open port
8443 in your firewall to be able to access this address from a different machine.

If you are unable to open port 8443 or you are having difficulty connecting from a different machine, you may
want to try ssh port forwarding in which you would run:

replacing host with the IP address or hostname of the machine that is running the installer. At this point, with ssh
connected in this manner, you should be able to use the https://127.0.0.1:8443 link as this will then forward that
request to the installer box via ssh.

Upon loading this address for the first time, you may be greeted with a message informing you that your
connection isn't private such as this:

[user@element-demo ~]$./element-enterprise-graphical-installer-2023-02.02-gui.bin

Testing network...

Using self-signed certificate with SHA-256 fingerprint:

F3:76:B3:2E:1B:B3:D2:20:3C:CD:D0:72:A3:5E:EC:4F:BC:3E:F5:71:37:0B:D7:68:36:2E:2C:AA:7A:F2:83:9

4

To start configuration open:

 https://192.168.122.47:8443 or https://10.1.185.64:8443 or https://127.0.0.1:8443

ssh <host> -L 8443:127.0.0.1:8443

In this case, you'll need to click "Advanced" and then "Continue to (unsafe)" in order to view the installer. As the
exact button names and links can vary between browsers, it would be hard for us to document them all, so you
may have slightly different wording depending on your browser.

The very first page that you come to is the host screen.

The Hosts Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/not-private.png

You will want to make sure that "Kubernetes Application" is selected. You can opt to skip the update setup or the
operator setup, but unless you know why you are doing that, you should leave them alone.

The very next prompt that you come to is for an EMS Image Store Username and Token. These are provided to
you by element as access tokens for our enterprise container registries. If you have lost your token, you can

always generate a new token at https://ems.element.io/on-premise/subscriptions.

https://ems-docs.element.io/uploads/images/gallery/2023-02/k8s1.png
https://ems.element.io/on-premise/subscriptions

Here, we find the ability to set the namespaces that the application will be deployed into.

The final options on the hostpage are related to connectivity. For this guide, we are assuming "Connected" and
you can leave that be. If you are doing "Airgapped", you would pick airgapped at this point and then please see

the section on airgapped installations.

You are presented with the option to provide docker hub credentials. These are optional, but if you do not provide
them, you may be rate limited by Docker and this could cause issues pulling container images.

https://ems-docs.element.io/uploads/images/gallery/2023-02/k8s2.png
https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-installer-in-an-air-gapped-environment

On this page, we get to specify the domains for our installation. In this example, we have a domain name of
airgap.local and this would mean our MXIDs would look like @kabbott:airgap.local.

Our domain page has checking to ensure that the host names resolve. Once you get green checks across the
board, you can click continue.

The Domains Screen

The Certificates Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/domains.png

On the Certificates screen, you will provide SSL certificate information for well-known delegation, Synapse,
Element Web, Synapse Admin, and Integrator.

If you are using Let's Encrypt, then each of the sections should look like:

If you are using certificate files, then you will see a screen like:

https://ems-docs.element.io/uploads/images/gallery/2023-02/certificate-letsencyrpt.png

which allows you to upload a .crt and .key file for each host. These files must be in PEM encoding. Our installer
does accept wildcard certificates.

Once you have completed the certificate section for each host on the page, you may click continue.

The Database Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/certificate-file.png

As you must use an external PostgreSQL database with our kubernetes install, on this page, we provide the
option to specify the database name, the database host name, the port to connect to, the SSL mode to use, and
finally, the username and password to connect with. Once you have completed this section, you may click
continue.

The Media Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/database.png

On this page, you can specify the size of your synapse media volume. Please leave "Create New Volume"
checked and specify the size of the volume that you wish to allocate. You must have this space available in
/data/element-deployment or whatever you specified back on the hosts screen. If you wish to create a 50G

volume, you would need to specify 50Gi for the Volume size.

Most deployments can ignore this, however, if you want to change any kubernetes cluster parameters, this is
where to do it.

If you are in an environment where you have self-signed certificates, you will want to disable TLS verification, by
clicking "Advanced" and then scrolling down and unchecking Verify TLS :

Please bear in mind that disabling TLS verification and using self-signed certificates is not recommended for
production deployments.

If your host names are not DNS resolvable, you need to use host aliases and this can be set up here. You will
also click "Advanced" and scroll down to the "Host Aliases" section in "k8s". In here, you will click "Add Host
Aliases" and then you will specify an IP and host names that resolve to that IP as such:

The Cluster Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/verifytls.png

Important: If you are not using OpenShift, you will need to set "Force UID GID" and "Set Sec Comp" to "Enable"
under the section "Security Context" so that it looks like:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hostaliases.png

If you are using OpenShift, you should leave the values of "Force UID GID" and "Set Sec Comp" set to "Auto".

When you are finished with this page, you can click continue.

The Synapse Screen

https://ems-docs.element.io/uploads/images/gallery/2023-05/seccontext-enable.png

The first setting that you will see is whether you want to auto accept invites. The default of "Manual" will fit most
use cases, but you are welcome to change this value.

The next setting is the maximum number of monthly active users (MAU) that you have purchased for your server.
Your server will not allow you to go past this value. If you set this higher than your purchased MAU and you go
over your purchased MAU, you will need to true up with Element to cover the cost of the unpaid users.

The next setting concerns registration. A server with open registration on the open internet can become a target,
so we default to closed registration. You will notice that there is a setting called "Custom" and this requires
explicit custom settings in the additional configuration section. Unless instructed by Element, you will not need the
"Custom" option and should instead pick "Closed" or "Open" depending on your needs.

After this, you will see that the installer has picked an admin password for you. You will want to use the eye icon
to view the password and copy this down as you will use this with the user onprem-admin-donotdelete to log
into the admin panel after installation.

https://ems-docs.element.io/uploads/images/gallery/2023-02/synapse-page.png

Continuing, we see telemetry. You should leave this enabled as you are required to report MAU to Element. In
the event that you are installing into an enviroment without internet access, you may disable this so that it does
not continue to try talking to Element. That said, you are still required to generate an MAU report at regular
intervals and share that with Element.

For more information on the data that Element collects, please see: What Telemetry Data is Collected by

Element?

Next, we have two advanced buttons. The top one is for synapse and gives you a text box to inject additional

synapse configs (homeserver.yaml), access to the macaroon, registration shared secret, and signing key.
Further, you can add and configure multiple synapse workers, external appservices, and federation. These topics
are presently beyond the scope of this install guide, but we will write them up in due time. Further, you also have
the ability to set a STUN shared secret and set TURN URIs for any existing TURN servers that you may have in
your environment.

https://ems-docs.element.io/uploads/images/gallery/2023-02/synapse-page2.png
https://ems-docs.element.io/books/ems-knowledge-base/page/what-telemetry-data-is-collected-by-element
https://ems-docs.element.io/books/ems-knowledge-base/page/what-telemetry-data-is-collected-by-element
https://github.com/matrix-org/synapse/blob/develop/docs/sample_config.yaml

https://ems-docs.element.io/uploads/images/gallery/2023-02/synaapseadvanced1.png

The second advanced button allows you to explicitly set any kubernetes cluster settings that you would like just
for the synapse pods. Most users will be able to ignore this.

You can hit continue to go to the next screen.

Most users will be able to simply click "Continue" here.

The Advanced section allows you to set any custom element web configurations you would like (config.json).

The Element Web Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/existingturn.png
https://github.com/vector-im/element-web/blob/develop/docs/config.md

A common custom configuration would be configuring permalinks for Element, which we have documented here:

Setting up Permalinks With the Installer

Further, it provides access to the k8s section, allowing you to explicitly set any kubernetes cluster settings that
you would like just for the element-web pod.

Most users will be able to simply click "Continue" here. The Advanced section allows you to explicitly set any
kubernetes cluster settings that you would like just for the synapse-admin-ui pod.

The Enterprise Admin Dashboard

https://ems-docs.element.io/uploads/images/gallery/2023-02/elewebadvanced.png
https://ems-docs.element.io/setting-up-permalinks-with-the-installer

One word to note here is that if you are not using delegated authentication, then the initial username that an
administrator will use to log into this dashboard post-installation is onprem-admin-donotdelete . You can find the
password for this user on the Synapse page in the "Admin Password" field.

If you are using delegated authentication, you will need to assign a user admin rights as detailed in this article:

How do I give a user admin rights when I am using delegated authentication and cannot log into the admin

console?

On this page, you can set up Integrator, the integrations manager.

The Integrator Screen

https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-give-a-user-admin-rights-when-i-am-using-delegated-authentication-and-cannot-log-into-the-admin-console
https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-give-a-user-admin-rights-when-i-am-using-delegated-authentication-and-cannot-log-into-the-admin-console
https://ems-docs.element.io/uploads/images/gallery/2023-02/intergrator-page.png

The first option allows you to choose whether users can add custom widgets to their rooms with the integrator or
not.

The next option allows you to specify which Jitsi instance the Jitsi widget will create conferences on.

The verify TLS option allows you to set this specifically for Integrator, regardless of what you set on the cluster
screen.

The logging section allows you to set the log level and whether the output should be structured or not.

The Advanced section allows you to explicitly set any kubernetes cluster settings that you would like just for the
integrator pods.

Click "Continue to go to the next screen".

This screen is where you can install any available integrations.

Some of these integrations will have "YAML" next to them. When you see this designation, this integration
requires making settings in YAML, much like the old installer. However, with this installer, these YAML files are
pre-populated and often only involve a few changes.

If you do not see a "YAML" designation next to the integration then this means that will use regular GUI elements
to configure this integration.

Over time, we will do the work required to move the integrations with "YAML" next to them to the new GUI format.

For specifics on configuring well known delegation, please see Setting Up Well Known Delegation

For specifics on setting up Delegated Authentication, please see Setting up Delegated Authentication With the

Installer

For specifics on setting up Group Sync, please see Setting up Group Sync with the Installer

For specifics on setting up GitLab, GitHub, and JIRA integrations, please see Setting up GitLab, GitHub, and

JIRA Integrations With the Installer

For specifics on setting up Adminbot and Auditbot, please see: Setting up Adminbot and Auditbot

For specifics on setting up Hydrogen, please see: Setting Up Hydrogen

For specifics on pointing your installation at an existing Jitsi instance, please see Setting Up Jitsi and TURN With

the Installer

If you do not have an existing TURN server or Jitsi server, our installer can configure these for you by following

the extra steps in Setting Up Jitsi and TURN With the Installer

For specifics on configuring the Teams Bridge, please see Setting Up the Teams Bridge

The Integrations Screen

https://ems-docs.element.io/setting-up-well-known-delegation
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-group-sync-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-adminbot-and-auditbot
https://ems-docs.element.io/setting-up-hydrogen
https://ems-docs.element.io/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/setting-up-the-teams-bridge

For specifics on configuring the Telegram Bridge, please see Setting Up the Telegram Bridge

For specifics on configuring the IRC Bridge, please see Setting Up the IRC Bridge

For specifics on configuring the XMPP Bridge, please see Setting Up the XMPP Bridge

Once you have configured all of the integrations that you would like to configure, you can click "Continue" to head
to the installation screen.

On the installation screen, you should see a blank console and a start button:

Click Start.

After a moment, you will notice the installer hang. If you go back to the prompt where you are running the
installer, you will see that you are being asked for the sudo password:

The Installation Screen

https://ems-docs.element.io/setting-up-the-telegram-bridge
https://ems-docs.element.io/setting-up-the-irc-bridge
https://ems-docs.element.io/setting-up-the-xmpp-bridge
https://ems-docs.element.io/uploads/images/gallery/2023-02/installscreen.png

Go ahead and enter the sudo password and the installation will continue.

On the very first time that you run the installer, you will be prompted to log out and back in again to allow Linux
group membership changes to be refreshed. This means that you will need to issue a ctrl-C in the terminal
running your installer and actually log all the way out of your Linux session, log back in, restart the installer,
navigate back to the installer screen, click start again, and then re-enter your sudo password. You will only have

https://ems-docs.element.io/uploads/images/gallery/2023-02/installstart1.png
https://ems-docs.element.io/uploads/images/gallery/2023-02/sudoask.png

to perform this step once per server.

Once the installation has finished, it can take as much as 15 minutes on a first run for everything to be configured
and set up. If you use:

You should see similar output to:

Once the admin console is up and running:

and synapse:

then you should be able to log in at your admin panel (in our case https://admin.airgap.local/) with the onprem-
admin-donotdelete user and the password that was specified on the "Synapse" screen.

In the new installer, all configuration files are placed in the directory .element-enterprise-server . This can be
found in your user's home directory. In this directory, you will find a subdirectory called config that contains the

Verifying Your Installation

kubectl get pods -n element-onprem

NAME READY STATUS RESTARTS AGE

app-element-web-c5bd87777-rqr6s 1/1 Running 1 29m

server-well-known-8c6bd8447-wddtm 1/1 Running 1 29m

postgres-0 1/1 Running 1 40m

instance-synapse-main-0 1/1 Running 2 29m

instance-synapse-haproxy-5b4b55fc9c-hnlmp 1/1 Running 0 20m

first-element-deployment-synapse-admin-ui-564cbf5665-dn8nv 1/1 Running

1 (4h4m ago) 3d1h

first-element-deployment-synapse-redis-59548698df-gqkcq 1/1 Running

1 (4h4m ago) 3d2h

first-element-deployment-synapse-haproxy-7587dfd6f7-gp6wh 1/1 Running

2 (4h3m ago) 2d23h

first-element-deployment-synapse-appservice-0 1/1 Running

3 (4h3m ago) 3d

first-element-deployment-synapse-main-0 1/1 Running

0 3h19m

A word about Configuration Files

actual configurations.

It is possible to run the installer without using the GUI provided that you have a valid set of configuration files in

the .element-enterprise-server/config directory. Directions on how to do this are available at: https://ems-

docs.element.io/books/ems-knowledge-base/page/how-do-i-run-the-installer-without-using-the-gui. Using this
method, you could use the GUI as a configuration editor and then take the resulting configuration and modify it as
needed for further installations.

This method also makes it possible to set things up once and then run future updates without having to use the
GUI.

After completing the installation you can share our User Guide to help orient and onboard your users to Element!

Running the Installer without the GUI

End-User Documentation

https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-run-the-installer-without-using-the-gui
https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-run-the-installer-without-using-the-gui
https://static.element.io/pdfs/element-user-guide.pdf

For testing and evaluation purposes - Element cannot guarantee production readiness with these sample
configurations.

Requires Helm installed locally

If you do not have a database present, it is possible to deploy PostgreSQL to your Kubernetes cluster.

This is great for testing and can work great in a production environment, but only for those with a high degree of
comfort with PostgreSQL as well as the tradeoffs involved with k8s-managed databases.

There are many different ways to do this depending on your organization's preferences - as long as it can create
an instance / database with the required locale and encoding it will work just fine. For a simple non-production

deployment, we will demonstrate deployment of the bitnami/postgresql into your cluster using Helm.

You can add the bitnami repo with a few commands:

Next, you'll need to create a values.yaml file to configure your PostgreSQL instance. This example is enough to

get started, but please consult the chart's README and values.yaml for a list of full parameters and options.

Kubernetes Installations - Quick Start

Deploying PostgreSQL to Kubernetes

helm repo add bitnami https://charts.bitnami.com/bitnami

helm repo update

helm search repo

bitnami/postgresql

 ~/Desktop

NAME CHART VERSION APP VERSION

DESCRIPTION

bitnami/postgresql 12.5.7 15.3.0 PostgreSQL (Postgres) is an open

source object-...

bitnami/postgresql-ha 11.7.5 15.3.0 This PostgreSQL cluster solution

includes the P...

auth:

 # This is the necessary configuration you will need for the Installer, minus the hostname

 database: "synapse"

 username: "synapse"

 password: "PleaseChangeMe!"

https://helm.sh/docs/intro/install/
https://github.com/bitnami/charts/tree/main/bitnami/postgresql
https://helm.sh/docs/intro/install/
https://github.com/bitnami/charts/tree/main/bitnami/postgresql#readme
https://github.com/bitnami/charts/blob/main/bitnami/postgresql/values.yaml

This example values.yaml file is enough to get you started for testing purposes, but things such as TLS
configuration, backups, HA and maintenance tasks are outside of the scope of the installer and this document.

Next, pick a namespace to deploy it to - this can be the same as the Installer's target namespace if you desire.
For this example we'll use the postgresql namespace.

Then it's just a single Helm command to install:

Which should output something like this when it is successful:

primary:

 initdb:

 # This ensures that the initial database will be created with the proper collation

settings

 args: "--lc-collate=C --lc-ctype=C"

 persistence:

 enabled: true

 # Set this value if you need to use a non-default StorageClass for your database's PVC

 # storageClass: ""

 size: 20Gi

 # Optional - resource requests / requirements

 # These are sufficient for a 10 - 20 user server

 resources:

 requests:

 cpu: 500m

 memory: 512Mi

 limits:

 memory: 2Gi

format:

helm install --create-namespace -n <namespace> <helm-release-name> <repo/chart> -f <values

file> (-f <additional values file>)

helm install --create-namespace -n postgresql postgresql bitnami/postgresql -f values.yaml

-- snip --

PostgreSQL can be accessed via port 5432 on the following DNS names from within your cluster:

This is telling us that postgresql.postgresql.svc.cluster.local will be our hostname for PostgreSQL
connections, which is the remaining bit of configuration required for the Installer in addition to the
database/username/password set in values.yaml . This will differ depending on what namespace you deploy to,
so be sure to check everything over.

If needed, this output can be re-displayed with helm get notes -n <namespace> <release name> , which for this
example would be helm get notes -n postgresql postgresql)

Similar to the PostgreSQL quick start example, this requires Helm

The kubernetes/ingress-nginx chart is an easy way to get a cluster outfitted with Ingress capabilities.

In an environment where LoadBalancer services are handled transparently, such as in a simple test k3s
environment with svclb enabled there's a minimal amount of configuration.

This example values.yaml file will create an IngressClass named nginx that will be used by default for any
Ingress objects in the cluster.

However, depending on your cloud provider / vendor (i.e. AWS ALB, Google Cloud Load Balancing etc) the
configuration for this can vary widely. There are several example configurations for many cloud providers in the

chart's README

You can see what your resulting HTTP / HTTPS IP address for this ingress controller by examining the service it
creates - for example, in my test environment I have an installed release of the ingress-nginx chart called k3s
under the ingress-nginx namespace, so I can run the following:

 postgresql.postgresql.svc.cluster.local - Read/Write connection

-- snip --

Deploying ingress-nginx controller

controller:

 ingressClassResource:

 name: nginx

 default: true

 enabled: true

format:

kubectl get service -n <namespace> <release-name>-ingress-nginx-controller

$ kubectl get service -n ingress-nginx k3s-ingress-nginx-controller

NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

k3s-ingress-nginx-controller LoadBalancer 10.43.254.210

https://helm.sh/docs/intro/install/
https://github.com/kubernetes/ingress-nginx/tree/main/charts/ingress-nginx
https://github.com/kubernetes/ingress-nginx/tree/main/charts/ingress-nginx#configuration

The value of EXTERNAL-IP will be the address that you'll need your DNS to point to (either locally via /etc/hosts or
LAN / WAN DNS configuration) to access your installer-provisioned services.

192.168.1.129 80:30634/TCP,443:31500/TCP 79d

Our installer can handle the installation of environments in which only one server is available. This environment
consists of a single server with a microk8s deployment in which we deploy our Element Server Suite to, resulting
in a fully functioning version of our platform.

To get started with a standalone installation, there are several things that need to be considered and this guide
will work through them:

Operating System
Postgresql Database
TURN Server
SSL Certificates
Extra configuration items

Once these areas have been covered, you’ll be ready to install your standalone server!

To get started, we have tested on Ubuntu 20.04 and Red Hat Enterprise Linux 8.7 and suggest that you start
there as well. For x86_64, you can grab an Ubuntu iso here:

https://releases.ubuntu.com/20.04.3/ubuntu-20.04.3-live-server-amd64.iso

or you can get Red Hat Enterprise Linux 8 with a Developer Subscription at:

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.7/x86_64/product-software

Note that future references in this document to EL reference Enterprise Linux.

Make sure to select docker as a package option. Do set up ssh.

Once you log in, please run:

Single Node Installations

Installing a Standalone Server

Overview

Operating System

Ubuntu Specific Directions

https://releases.ubuntu.com/20.04.3/ubuntu-20.04.3-live-server-amd64.iso
https://developers.redhat.com/products/rhel/download
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.7/x86_64/product-software

The installer requires that you run it as a non-root user who has sudo permissions. Please make sure that you
have a user who can use sudo . If you wanted to make a user called element-demo that can use sudo , the
following commands (run as root) would achieve that:

The installer also requires that your non-root user has a home directory in /home.

Make sure to select "Container Management" in the "Additional Software" section.

Once you log in, please run:

On the update-alternatives command, if you see more than one option, select the option with a command
string of /usr/bin/python3.9 .

The installer requires that you run it as a non-root user who has sudo permissions. Please make sure that you
have a user who can use sudo . If you wanted to make a user called element-demo that can use sudo , the
following commands (run as root) would achieve that:

The installer also requires that your non-root user has a home directory in /home.

If you have previously used installer versions 2023-03.01 and earlier, you will need to run our migration script to
convert your previous configuration to the new format that is used with our UI based installer. This script became
available in 2023-03.02, so you must have at least that version or higher of the graphical installer for this to work.

NOTE: Before running the migration script, we highly recommend that you take a backup or snapshot of
your working environment. While we have tested the migration script against several configurations at
this point, we have not tested for all of the combinations of configuration that the previous installer
allowed. We expect that migration will be a quick process for most customers, but in the event that
something goes wrong, you'll want to be able to get back to a known good state through a backup or
snapshot.

sudo apt-get update

sudo apt-get upgrade

useradd element-demo

gpasswd -a element-demo sudo

EL Specific directions

sudo yum update -y

sudo yum install podman-docker python39-pip python39-devel make gcc -y

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm -y

sudo update-alternatives --config python3

useradd element-demo

gpasswd -a element-demo wheel

Migrating from our older installer

NB: If you are using group sync, you cannot presently migrate to the graphical installer. We are working
to address the issues with migrating group sync and will remove this note once we have those
addressed.

If you have not used our installer before, you may safely ignore this section.

To run the migration script, please do the following:

Make sure to replace ~/.element-onpremise-config with the path that your actual configuration exists in.
Further, replace YYYY-MM.VERSION with the appropriate tag for the installer you downloaded.

Once the import has finished, the GUI will start and you will be able to browse to the installer at one of the
provided URLs, much as if you had started the installer without doing a migration as detailed in the following
section.

Element Enterprise On-Premise needs to bind and serve content over:

Port 80 TCP
Port 443 TCP
Port 8443 TCP (Installer GUI)

microk8s needs to bind and serve content over:

Port 16443 TCP
Port 10250 TCP
Port 10255 TCP
Port 25000 TCP
Port 12379 TCP
Port 10257 TCP
Port 10259 TCP
Port 19001 TCP

For more information, see https://microk8s.io/docs/ports.

In a default Ubuntu installation, these ports are allowed through the firewall. You will need to ensure that these
ports are passed through your firewall.

For EL instances with firewalld enabled, the installer will take care of opening these ports for you.

Further, you need to make sure that your host is able to access the following hosts on the internet:

api.snapcraft.io
*.snapcraftcontent.com
gitlab.matrix.org
gitlab-registry.matrix.org
pypi.org

chmod +x ./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin

./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin --import ~/.element-

onpremise-config

Network Specifics

https://microk8s.io/docs/ports

docker.io
*.docker.com
get.helm.sh
k8s.gcr.io
cloud.google.com
storage.googleapis.com

In addition, you will also need to make sure that your host can access your distributions' package repositories. As
these hostnames can vary, it is beyond the scope of this documentation to enumerate them.

We also cover the case where you need to use a proxy to access the internet. Please see this article for more

information: Configuring a microk8s Single Node Instance to Use a Network Proxy

The installation requires that you have a postgresql database with a locale of C and UTF8 encoding set up. See

https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-database for further details.

If you have this already, please make note of the database name, user, and password as you will need these to
begin the installation.

If you do not already have a database, then the single node installer will set up PostgreSQL on your behalf.

Head to https://ems.element.io/on-premise/download and download the latest installer. The installer will be called
element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin . You will take this file and copy it to the

machine where you will be installing the Element Server Suite. Once you have this file on the machine in a
directory accessible to your sudo-enabled user, you will run:

chmod +x ./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin

replacing the YYYY-MM.VERSION with the appropriate tag for the installer you downloaded.

Once you have done this, you will run:

./element-enterprise-graphical-installer-YYYY-MM.VERSION-gui.bin

replacing the YYYY-MM.VERSION with the appropriate tag for the installer you downloaded, and this will start a web
server with the installer loaded.

You will see a message similar to:

Network Proxies

Postgresql Database

Beginning the Installation

[user@element-demo ~]$./element-enterprise-graphical-installer-2023-02.02-gui.bin

Testing network...

https://ems-docs.element.io/books/ems-knowledge-base/page/configuring-a-microk8s-single-node-instance-to-use-a-network-proxy
https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-database
https://ems.element.io/on-premise/download

At this point, you will need to open a web browser and browse to one of these IPs. You may need to open port
8443 in your firewall to be able to access this address from a different machine.

If you are unable to open port 8443 or you are having difficulty connecting from a different machine, you may
want to try ssh port forwarding in which you would run:

replacing host with the IP address or hostname of the machine that is running the installer. At this point, with ssh
connected in this manner, you should be able to use the https://127.0.0.1:8443 link as this will then forward that
request to the installer box via ssh.

Upon loading this address for the first time, you may be greeted with a message informing you that your
connection isn't private such as this:

Using self-signed certificate with SHA-256 fingerprint:

F3:76:B3:2E:1B:B3:D2:20:3C:CD:D0:72:A3:5E:EC:4F:BC:3E:F5:71:37:0B:D7:68:36:2E:2C:AA:7A:F2:83:9

4

To start configuration open:

 https://192.168.122.47:8443 or https://10.1.185.64:8443 or https://127.0.0.1:8443

ssh <host> -L 8443:127.0.0.1:8443

https://ems-docs.element.io/uploads/images/gallery/2023-02/not-private.png

In this case, you'll need to click "Advanced" and then "Continue to (unsafe)" in order to view the installer. As the
exact button names and links can vary between browsers, it would be hard for us to document them all, so you
may have slightly different wording depending on your browser.

The very first page that you come to is the host screen.

You will want to make sure that "Standalone" is selected. If you are using LetsEncrypt for your certificates, you
will want to make sure that you select "Setup Cert Manager" and enter an email address for LetsEncrypt to
associate with your certificates. If you are using custom certifactes or electing to manage SSL certificates
yourself, then you will want to select "Skip Cert Manager".
The very next prompt that you come to is for an EMS Image Store Username and Token. These are provided to
you by element as access tokens for our enterprise container registries. If you have lost your token, you can

always generate a new token at https://ems.element.io/on-premise/subscriptions.

The Hosts Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/host-page1.png
https://ems.element.io/on-premise/subscriptions

The next option that you have is for microk8s. By default, microk8s will set up persistent volumes in
/data/element-deployment and will allow 20GB of space to do this. For most installations, this is fine and can be
left alone, but if you'd like to customize those options, you can do that here.

Next, we have DNS resolvers. The default DNS resolvers are Google (8.8.8.8 and 8.8.4.4). If you need to use
your company's DNS servers, please change these values appropriately.

https://ems-docs.element.io/uploads/images/gallery/2023-02/host-page2.png

Next, we get the option to either have the installer install Postgres in your cluster or to use an external postgresql
server. The Postgres in cluster option is only supported for our standalone installation and you should read our

storage and backup guidelines for this configuration. At any rate, if you use the in cluster postgres, you will see
that the installer defaults to /data/postgres and has generated a random password for your postgresql admin
account. You can use the eye to see the password and you can certainly change this to whatever you'd like.

The final options on the hostpage are related to connectivity. For this guide, we are assuming "Connected" and
you can leave that be. If you are doing "Airgapped", you would pick airgapped at this point and then please see

the section on airgapped installations.

You are presented with the option to provide docker hub credentials. These are optional, but if you do not provide
them, you may be rate limited by Docker and this could cause issues pulling container images.

https://ems-docs.element.io/uploads/images/gallery/2023-02/host-page3.png
https://ems-docs.element.io/books/element-on-premise-documentation/page/single-node-installs-storage-and-backup-guidelines
https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-installer-in-an-air-gapped-environment

On this page, we get to specify the domains for our installation. In this example, we have a domain name of
airgap.local and this would mean our MXIDs would look like @kabbott:airgap.local.

Our domain page has checking to ensure that the host names resolve. Once you get green checks across the
board, you can click continue.

The Domains Screen

The Certificates Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/domains.png

On the Certificates screen, you will provide SSL certificate information for well-known delegation, Synapse,
Element Web, Synapse Admin, and Integrator.

2 options

Option 1: You already host a base domain example.com on a web server, then Well-Known Delegation should
be set to Externally Managed .

Element clients need to be able to request https://example.com/.well-known/matrix/client to work properly.

The web server hosting the domain name should forward the requests to .well-known/matrix/client to the
element enterprise server so that the wellKnownPod can serve it to the clients.

If that's not possible, the alternative is to copy the well known file directly on the example.com webserver. The
wellKnownPod will still be present but wont be used by any system.

It cannot be set to Certmanager / Letsencrypt .

Option 2: You don't already host a base domain example.com , then the wellKnownPod hosts the well-know file
and serves the base domain example.com

You can choose those 3 different settings:

Certmanager / Letsencryp t: the certificate for the base domain is signed by Letsencrypt
Certificate File : the certificate is signed by your own CA or by a public CA (Verisign, Sectigo,..)
Existing TLS Certificate in the Cluster : certificate already uploaded in a secret

If you are using Let's Encrypt, then each of the sections should look like:

If you are using certificate files, then you will see a screen like:

https://ems-docs.element.io/uploads/images/gallery/2023-02/certificate-letsencyrpt.png

which allows you to upload a .crt and .key file for each host. These files must be in PEM encoding. Our installer
does accept wildcard certificates.

Once you have completed the certificate section for each host on the page, you may click continue.

The Database Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/certificate-file.png

If you have elected to have the installer configure PostgreSQL for you, then you will not see this screen and can
skip this section.

If you are using an external database, then you will see this page, where we provide the option to specify the
database name, the database host name, the port to connect to, the SSL mode to use, and finally, the username
and password to connect with.

If your database is installed on the same server where Element is installed, you have to enter the server public IP
address since the container is not sharing the host network namespace. Entering 127.0.0.1 will resolve to the
container itself and cause the installation failing.

https://ems-docs.element.io/uploads/images/gallery/2023-02/database.png

Once you have completed this section, you may click continue.

On this page, you can specify the size of your synapse media volume. Please leave "Create New Volume"
checked and specify the size of the volume that you wish to allocate. You must have this space available in
/data/element-deployment or whatever you specified back on the hosts screen. If you wish to create a 50G

volume, you would need to specify 50Gi for the Volume size.

Most deployments can ignore this, however, if you want to change any microk8s cluster parameters, this is where
to do it.

If you are in an environment where you have self-signed certificates, you will want to disable TLS verification, by
clicking "Advanced" and then scrolling down and unchecking Verify TLS :

Please bear in mind that disabling TLS verification and using self-signed certificates is not recommended for
production deployments.

If your host names are not DNS resolvable, you need to use host aliases and this can be set up here. You will
also click "Advanced" and scroll down to the "Host Aliases" section in "k8s". In here, you will click "Add Host
Aliases" and then you will specify an IP and host names that resolve to that IP as such:

The Media Screen

The Cluster Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/verifytls.png

When you are finished with this page, you can click continue.

The Synapse Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/hostaliases.png

The first setting that you will see is whether you want to auto accept invites. The default of "Manual" will fit most
use cases, but you are welcome to change this value.

The next setting is the maximum number of monthly active users (MAU) that you have purchased for your server.
Your server will not allow you to go past this value. If you set this higher than your purchased MAU and you go
over your purchased MAU, you will need to true up with Element to cover the cost of the unpaid users.

The next setting concerns registration. A server with open registration on the open internet can become a target,
so we default to closed registration. You will notice that there is a setting called "Custom" and this requires
explicit custom settings in the additional configuration section. Unless instructed by Element, you will not need the
"Custom" option and should instead pick "Closed" or "Open" depending on your needs.

After this, you will see that the installer has picked an admin password for you. You will want to use the eye icon
to view the password and copy this down as you will use this with the user onprem-admin-donotdelete to log
into the admin panel after installation.

https://ems-docs.element.io/uploads/images/gallery/2023-02/synapse-page.png

Continuing, we see telemetry. You should leave this enabled as you are required to report MAU to Element. In
the event that you are installing into an enviroment without internet access, you may disable this so that it does
not continue to try talking to Element. That said, you are still required to generate an MAU report at regular
intervals and share that with Element.

For more information on the data that Element collects, please see: What Telemetry Data is Collected by

Element?

Next, we have two advanced buttons. The top one is for synapse and gives you a text box to inject additional

synapse configs (homeserver.yaml), access to the macaroon, registration shared secret, and signing key.
Further, you can add and configure multiple synapse workers, external appservices, and federation. These topics
are presently beyond the scope of this install guide, but we will write them up in due time. Further, you also have
the ability to set a STUN shared secret and set TURN URIs for any existing TURN servers that you may have in
your environment.

https://ems-docs.element.io/uploads/images/gallery/2023-02/synapse-page2.png
https://ems-docs.element.io/books/ems-knowledge-base/page/what-telemetry-data-is-collected-by-element
https://ems-docs.element.io/books/ems-knowledge-base/page/what-telemetry-data-is-collected-by-element
https://github.com/matrix-org/synapse/blob/develop/docs/sample_config.yaml

https://ems-docs.element.io/uploads/images/gallery/2023-02/synaapseadvanced1.png

The second advanced button allows you to explicitly set any microk8s cluster settings that you would like just for
the synapse pods. Most users will be able to ignore this.

You can hit continue to go to the next screen.

Most users will be able to simply click "Continue" here.

The Advanced section allows you to set any custom element web configurations you would like (config.json).

The Element Web Screen

https://ems-docs.element.io/uploads/images/gallery/2023-02/existingturn.png
https://github.com/vector-im/element-web/blob/develop/docs/config.md

A common custom configuration would be configuring permalinks for Element, which we have documented here:

Setting up Permalinks With the Installer

Further, it provides access to the k8s section, allowing you to explicitly set any microk8s cluster settings that you
would like just for the element-web pod.

Most users will be able to simply click "Continue" here. The Advanced section allows you to explicitly set any
microk8s cluster settings that you would like just for the synapse-admin-ui pod.

The Enterprise Admin Dashboard

https://ems-docs.element.io/uploads/images/gallery/2023-02/elewebadvanced.png
https://ems-docs.element.io/setting-up-permalinks-with-the-installer

One word to note here is that if you are not using delegated authentication, then the initial username that an
administrator will use to log into this dashboard post-installation is onprem-admin-donotdelete . You can find the
password for this user on the Synapse page in the "Admin Password" field.

If you are using delegated authentication, you will need to assign a user admin rights as detailed in this article:

How do I give a user admin rights when I am using delegated authentication and cannot log into the admin

console?

On this page, you can set up Integrator, the integrations manager.

The Integrator Screen

https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-give-a-user-admin-rights-when-i-am-using-delegated-authentication-and-cannot-log-into-the-admin-console
https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-give-a-user-admin-rights-when-i-am-using-delegated-authentication-and-cannot-log-into-the-admin-console
https://ems-docs.element.io/uploads/images/gallery/2023-02/intergrator-page.png

The first option allows you to choose whether users can add custom widgets to their rooms with the integrator or
not.

The next option allows you to specify which Jitsi instance the Jitsi widget will create conferences on.

The verify TLS option allows you to set this specifically for Integrator, regardless of what you set on the cluster
screen.

The logging section allows you to set the log level and whether the output should be structured or not.

The Advanced section allows you to explicitly set any microk8s cluster settings that you would like just for the
integrator pods.

Click "Continue to go to the next screen".

This screen is where you can install any available integrations.

Some of these integrations will have "YAML" next to them. When you see this designation, this integration
requires making settings in YAML, much like the old installer. However, with this installer, these YAML files are
pre-populated and often only involve a few changes.

If you do not see a "YAML" designation next to the integration then this means that will use regular GUI elements
to configure this integration.

Over time, we will do the work required to move the integrations with "YAML" next to them to the new GUI format.

For specifics on configuring well known delegation, please see Setting Up Well Known Delegation

For specifics on setting up Delegated Authentication, please see Setting up Delegated Authentication With the

Installer

For specifics on setting up Group Sync, please see Setting up Group Sync with the Installer

For specifics on setting up GitLab, GitHub, and JIRA integrations, please see Setting up GitLab, GitHub, and

JIRA Integrations With the Installer

For specifics on setting up Adminbot and Auditbot, please see: Setting up Adminbot and Auditbot

For specifics on setting up Hydrogen, please see: Setting Up Hydrogen

For specifics on pointing your installation at an existing Jitsi instance, please see Setting Up Jitsi and TURN With

the Installer

If you do not have an existing TURN server or Jitsi server, our installer can configure these for you by following

the extra steps in Setting Up Jitsi and TURN With the Installer

For specifics on configuring the Teams Bridge, please see Setting Up the Teams Bridge

The Integrations Screen

https://ems-docs.element.io/setting-up-well-known-delegation
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-group-sync-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-adminbot-and-auditbot
https://ems-docs.element.io/setting-up-hydrogen
https://ems-docs.element.io/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/setting-up-the-teams-bridge

For specifics on configuring the Telegram Bridge, please see Setting Up the Telegram Bridge

For specifics on configuring the IRC Bridge, please see Setting Up the IRC Bridge

For specifics on configuring the XMPP Bridge, please see Setting Up the XMPP Bridge

Once you have configured all of the integrations that you would like to configure, you can click "Continue" to head
to the installation screen.

On the installation screen, you should see a blank console and a start button:

Click Start.

After a moment, you will notice the installer hang. If you go back to the prompt where you are running the
installer, you will see that you are being asked for the sudo password:

The Installation Screen

https://ems-docs.element.io/setting-up-the-telegram-bridge
https://ems-docs.element.io/setting-up-the-irc-bridge
https://ems-docs.element.io/setting-up-the-xmpp-bridge
https://ems-docs.element.io/uploads/images/gallery/2023-02/installscreen.png

Go ahead and enter the sudo password and the installation will continue.

On the very first time that you run the installer, you will be prompted to log out and back in again to allow Linux
group membership changes to be refreshed. This means that you will need to issue a ctrl-C in the terminal
running your installer and actually log all the way out of your Linux session, log back in, restart the installer,
navigate back to the installer screen, click start again, and then re-enter your sudo password. You will only have

https://ems-docs.element.io/uploads/images/gallery/2023-02/installstart1.png
https://ems-docs.element.io/uploads/images/gallery/2023-02/sudoask.png

to perform this step once per server.

Once the installation has finished, it can take as much as 15 minutes on a first run for everything to be configured
and set up. If you use:

You should see similar output to:

Once the admin console is up and running:

and synapse:

then you should be able to log in at your admin panel (in our case https://admin.airgap.local/) with the onprem-
admin-donotdelete user and the password that was specified on the "Synapse" screen.

In the new installer, all configuration files are placed in the directory .element-enterprise-server . This can be
found in your user's home directory. In this directory, you will find a subdirectory called config that contains the

Verifying Your Installation

kubectl get pods -n element-onprem

NAME READY STATUS RESTARTS AGE

app-element-web-c5bd87777-rqr6s 1/1 Running 1 29m

server-well-known-8c6bd8447-wddtm 1/1 Running 1 29m

postgres-0 1/1 Running 1 40m

instance-synapse-main-0 1/1 Running 2 29m

instance-synapse-haproxy-5b4b55fc9c-hnlmp 1/1 Running 0 20m

first-element-deployment-synapse-admin-ui-564cbf5665-dn8nv 1/1 Running

1 (4h4m ago) 3d1h

first-element-deployment-synapse-redis-59548698df-gqkcq 1/1 Running

1 (4h4m ago) 3d2h

first-element-deployment-synapse-haproxy-7587dfd6f7-gp6wh 1/1 Running

2 (4h3m ago) 2d23h

first-element-deployment-synapse-appservice-0 1/1 Running

3 (4h3m ago) 3d

first-element-deployment-synapse-main-0 1/1 Running

0 3h19m

A word about Configuration Files

actual configurations.

It is possible to run the installer without using the GUI provided that you have a valid set of configuration files in

the .element-enterprise-server/config directory. Directions on how to do this are available at: https://ems-

docs.element.io/books/ems-knowledge-base/page/how-do-i-run-the-installer-without-using-the-gui. Using this
method, you could use the GUI as a configuration editor and then take the resulting configuration and modify it as
needed for further installations.

This method also makes it possible to set things up once and then run future updates without having to use the
GUI.

After completing the installation you can share our User Guide to help orient and onboard your users to Element!

Running the Installer without the GUI

End-User Documentation

https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-run-the-installer-without-using-the-gui
https://ems-docs.element.io/books/ems-knowledge-base/page/how-do-i-run-the-installer-without-using-the-gui
https://static.element.io/pdfs/element-user-guide.pdf

/mnt (or a common root for all <component>_data_path variables) should be a distinct mount point
Ideally this would have an independent lifecycle from the server itself
Ideally this would be easily snapshot-able, either at a filesystem level or with the backing storage

Files stored with uid=10006/gid=10006, sample config uses /mnt/data/adminbot for single-node
instances

The backing path for single node instances can be changed by setting bot_data_path in the
adminbot config directory

Storage space required is proportional to the number of user devices on the server. 1GB is sufficient
for most servers

The size of the PVC can be changed by setting bot_data_size in the adminbot config
directory

Files stored with uid=10006/gid=10006, sample config uses /mnt/data/auditbot for single-node
instances

The backing path for single node instances can be changed by setting bot_data_path in the
auditbot config directory

Storage space required is proportional to the number of events tracked. 1GB is sufficient with the
sample config logfile_size / logfile_keep values

The size of the PVC can be changed by setting bot_data_size in the auditbot config
directory

Main:
File stored with uid=10005/gid=1000, sample config uses /mnt/dimension for single-node
instances

The backing path for single node instances can be changed by setting bot_data_path in
the dimension config directory

Storage space is constant to store a single file. 10M is sufficient for every server
The size of the PVC can be changed by setting bot_data_size in the dimension config
directory

Postgres (in-cluster):

Single Node Installs: Storage and Backup
Guidelines

General storage recommentations for single-
node instances

Adminbot storage:

Auditbot storage:

Dimension storage :

Files stored with uid=999/gid=999, sample config does not specify a default path for single-node
instances

The backing path for single node instances can be changed by setting
postgres_data_path in the dimension config directory

Storage space is proportional to the number of integration instances. 5GB is sufficient for most
servers

The size of the PVC can be changed by setting postgres_storage_size in the
dimension directory folder

Media:
File stored with uid=10991/gid=10991, sample config uses /mnt/data/synapse-media for
single-node instances

The backing path for single node instances can be changed by setting
media_host_data_path in parameters.yml

Storage space required grows with the number and size of uploaded media. 50GB is used as a
starting point for PoC but can easily be exceeded depending on your use-case

The size of the PVC can be changed by setting media_size in parameters.yml

Files stored with uid=999/gid=999, sample config uses /mnt/data/synapse-postgres for single-node
instances

The backing path for single node instances can be changed by setting postgres_data_path in
parameters.yml

Storage space is proportional to the activity on the homeserver. 5GB is used as a starting point for PoC
but can easily be exceeded depending on traffic

The size of the PVC can be changed by setting postgres_storage_size in parameters.yml

Adminbot:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the backing
directory to backup storage

Auditbot:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the backing
directory to backup storage

Dimension:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the backing
directory to backup storage

Synapse Media:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the backing
directory to backup storage

Postgres (in-cluster):
Backups should be made by kubectl -n element-onprem exec -it postgres-synapse-0 --
sh -c 'pg_dump -U $POSTGRES_USER $POSTGRES_DB' > synapse_postgres_backup_$(date
+%Y%m%d-%H%M%S).sql

Postgres (external):
Backup procedures as per your DBA

Configuration:

Synapse storage:

Postgres (in-cluster) storage:

Backup Guidance:

Please ensure that your entire configuration directory (that contains at least parameters.yml &
secrets.yml but may also include other sub-directories & configuration files) is regularly backed

up
The suggested configuration path in Element's documentation is ~/.element-onpremise-
config but could be anything. It is whatever directory you used with the installer.

An air-gapped environment is any environment in which the running hosts will not have access to the greater
internet. This proposes a situation in which these hosts are unable to get access to various needed bits of
software from Element and also are unable to share telemetry data back with Element.

For some of these environments, they can be connected to the internet from time to time and updated during
those connection periods. In other environments, the hosts are never connected to the internet and everything
must be moved over sneaker net.

This guide will cover running the microk8s installer when only sneaker net is available as that is the most
restrictive of these environments.

You will need our airgapped dependencies .tar.gz file which you can get from Element:

element-enterprise-installer-airgapped-<version>-gui.tar.gz

Extract the airgapped dependencies to a directory on the machine you are installing from. You obtain the
following directories :

airgapped/pip
airgapped/galaxy
airgapped/snaps
airgapped/containerd
airgapped/images

Your airgapped machine will still require access to airgapped linux repositories depending on your OS. If using

Red Hat Enterprise Linux, you will also need access to the EPEL repository in your airgapped environment.

Using the Installer in an Air-Gapped
Environment

Defining Air-Gapped Environments

Preparing the media to sneaker net into
the air gapped environment

Running the installer in the air gapped
environment

https://docs.fedoraproject.org/en-US/epel/

When using the installer, select "Airgapped" on the first hosts screen.

The Local Registry parameter should be left alone unless you have a separate custom registry that you would like
to use.

For the Source directory, you need to specify the absolute path to the airgapped directory that was extracted
from the tarball.

The installer will upload the images automatically to your local registry, and use these references to start the
workloads.

If you are doing a kubernetes installation (instead of a single node installation), please note that once the image
upload has been done, you will need to copy the airgapped/images/images_digests.yml file to the same path
on the machine which will be used to render or deploy element services. Doing this, the new image digests will be
used correctly in the kubernetes manifests used for deployment.

https://ems-docs.element.io/uploads/images/gallery/2023-02/hosts-airgapped.png

Troubleshooting the Element Installer comes down to knowing a little bit about kubernetes and how to check the
status of the various resources. This guide will walk you through some of the initial steps that you'll want to take
when things are going wrong.

If you are using element-enterprise-graphical-installer-2023-03.02-gui.bin and element-enterprise-installer-
airgapped-2023-03.02-gui.tar.gz. You might run into an error looking like this :

The workaround for it is to copy the pip folder from the airgapped directory to ~/.element-enterprise-
server/installer/airgapped/pip

Sometimes there will be problems when running the ansible-playbook portion of the installer. When this happens,
you can increase the verbosity of ansible logging by editing .ansible.rc in the installer directory and setting:

and re-running the installer. This will generate quite verbose output, but that typically will help pinpoint what the
actual problem with the installer is.

Troubleshooting

Introduction to Troubleshooting

Known issues

Airgapped installation does not start

Looking in links: ./airgapped/pip

WARNING: Url './airgapped/pip' is ignored. It is either a non-existing path or lacks a

specific scheme.

ERROR: Could not find a version that satisfies the requirement wheel (from versions: none)

ERROR: No matching distribution found for wheel

install.sh problems

export ANSIBLE_DEBUG=true

export ANSIBLE_VERBOSITY=4

In general, a well-functioning Element stack has at it's minimum the following containers (or pods in
kubernetes language) running:

[user@element2 ~]$ kubectl get pods -n element-onprem

kubectl get pods -n element-onprem

NAME READY STATUS

RESTARTS AGE

first-element-deployment-element-web-6cc66f48c5-lvd7w 1/1 Running

0 4d20h

first-element-deployment-element-call-c9975d55b-dzjw2 1/1 Running

0 4d20h

integrator-postgres-0 3/3 Running

0 4d20h

synapse-postgres-0 3/3 Running

0 4d20h

first-element-deployment-integrator-59bcfc67c5-jkbm6 3/3 Running

0 4d20h

adminbot-admin-app-element-web-c9d456769-rpk9l 1/1 Running

0 4d20h

auditbot-admin-app-element-web-5859f54b4f-8lbng 1/1 Running

0 4d20h

first-element-deployment-synapse-redis-68f7bfbdc-wht9m 1/1 Running

0 4d20h

first-element-deployment-synapse-haproxy-7f66f5fdf5-8sfkf 1/1 Running

0 4d20h

adminbot-pipe-0 1/1 Running

0 4d20h

auditbot-pipe-0 1/1 Running

0 4d20h

first-element-deployment-synapse-admin-ui-564bb5bb9f-87zb4 1/1 Running

0 4d20h

first-element-deployment-groupsync-0 1/1 Running

0 20h

first-element-deployment-well-known-64d4cfd45f-l9kkr 1/1 Running

0 20h

Problems post-installation
Checking Pod Status and Getting Logs

The above kubectl get pods -n element-onprem is the first place to start. You'll notice in the above,
all of the pods are in the Running status and this indicates that all should be well. If the state is
anything other than "Running" or "Creating", then you'll want to grab logs for those pods. To grab the
logs for a pod, run:

replacing <pod name> with the actual pod name. If we wanted to get the logs from synapse, the
specific syntax would be:

and this would generate logs similar to:

first-element-deployment-synapse-main-0 1/1 Running

0 20h

first-element-deployment-synapse-appservice-0 1/1 Running

0 20h

kubectl logs -n element-onprem <pod name>

kubectl logs -n element-onprem first-element-deployment-synapse-main-0

 2022-05-03 17:46:33,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2887 - Dropped 0 items from caches

2022-05-03 17:46:33,375 - synapse.storage.databases.main.metrics - 471 - INFO -

generate_user_daily_visits-289 - Calling _generate_user_daily_visits

2022-05-03 17:46:58,424 - synapse.metrics._gc - 118 - INFO - sentinel - Collecting gc

1

2022-05-03 17:47:03,334 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2888 - Dropped 0 items from caches

2022-05-03 17:47:33,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2889 - Dropped 0 items from caches

2022-05-03 17:48:03,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2890 - Dropped 0 items from caches

Again, for every pod not in the Running or Creating status, you'll want to use the above procedure to
get the logs for Element to look at.
If you don't have any pods in the element-onprem namespace as indicated by running the above
command, then you should run:

[user@element2 ~]$ kubectl get pods -A

NAMESPACE NAME READY STATUS

RESTARTS AGE

kube-system calico-node-2lznr 1/1 Running

0 8d

kube-system calico-kube-controllers-c548999db-s5cjm 1/1 Running

0 8d

kube-system coredns-5dbccd956f-glc8f 1/1 Running

0 8d

kube-system dashboard-metrics-scraper-6b6f796c8d-8x6p4 1/1 Running

0 8d

ingress nginx-ingress-microk8s-controller-w8lcn 1/1 Running

0 8d

cert-manager cert-manager-cainjector-6586bddc69-9xwkj 1/1 Running

0 8d

kube-system hostpath-provisioner-78cb89d65b-djfq5 1/1 Running

0 8d

kube-system kubernetes-dashboard-765646474b-5lhxp 1/1 Running

0 8d

cert-manager cert-manager-5bb9dd7d5d-cg9h8 1/1 Running

0 8d

container-registry registry-f69889b8c-zkhm5 1/1 Running

0 8d

cert-manager cert-manager-webhook-6fc8f4666b-9tmjb 1/1 Running

0 8d

kube-system metrics-server-5f8f64cb86-f876p 1/1 Running

0 8d

jitsi sysctl-jvb-vs9mn 1/1 Running

0 8d

jitsi shard-0-jicofo-7c5cd9fff5-qrzmk 1/1 Running

0 8d

jitsi shard-0-web-fdd565cd6-v49ps 1/1 Running

0 8d

jitsi shard-0-web-fdd565cd6-wmzpb 1/1 Running

0 8d

jitsi shard-0-prosody-6d466f5bcb-5qsbb 1/1 Running

0 8d

jitsi shard-0-jvb-0 1/2 Running

0 8d

operator-onprem element-operator-controller-manager-... 2/2 Running

0 4d

updater-onprem element-updater-controller-manager-... 2/2 Running

0 4d

element-onprem first-element-deployment-element-web-... 1/1 Running

0 4d

element-onprem first-element-deployment-element-call-... 1/1 Running

0 4d

element-onprem integrator-postgres-0 3/3 Running

0 4d

element-onprem synapse-postgres-0 3/3 Running

0 4d

element-onprem first-element-deployment-integrator-... 3/3 Running

0 4d

element-onprem adminbot-admin-app-element-web-... 1/1 Running

0 4d

element-onprem auditbot-admin-app-element-web-... 1/1 Running

0 4d

element-onprem first-element-deployment-synapse-redis-... 1/1 Running

0 4d

element-onprem first-element-deployment-synapse-haproxy-.. 1/1 Running

0 4d

element-onprem adminbot-pipe-0 1/1 Running

0 4d

element-onprem auditbot-pipe-0 1/1 Running

0 4d

element-onprem first-element-deployment-synapse-admin-ui-. 1/1 Running

0 4d

element-onprem first-element-deployment-groupsync-0 1/1 Running

0 20h

element-onprem first-element-deployment-well-known-... 1/1 Running

0 20h

element-onprem first-element-deployment-synapse-main-0 1/1 Running

0 20h

element-onprem first-element-deployment-synapse-appservice-0 1/1 Running

0 20h

This is the output from a healthy system, but if you have any of these pods not in the Running or
Creating state, then please gather logs using the following syntax:

kubectl logs -n <namespace> <pod name>

So to gather logs for the kubernetes ingress, you would run:

and you would see logs similar to:

kubectl logs -n ingress nginx-ingress-microk8s-controller-w8lcn

Again, for all pods not in the Running or Creating state, please use the above method to get log data
to send to Element.

I0502 14:15:08.467258 6 leaderelection.go:248] attempting to acquire leader

lease ingress/ingress-controller-leader...

I0502 14:15:08.467587 6 controller.go:155] "Configuration changes detected,

backend reload required"

I0502 14:15:08.481539 6 leaderelection.go:258] successfully acquired lease

ingress/ingress-controller-leader

I0502 14:15:08.481656 6 status.go:84] "New leader elected" identity="nginx-

ingress-microk8s-controller-n6wmk"

I0502 14:15:08.515623 6 controller.go:172] "Backend successfully reloaded"

I0502 14:15:08.515681 6 controller.go:183] "Initial sync, sleeping for 1

second"

I0502 14:15:08.515705 6 event.go:282] Event(v1.ObjectReference{Kind:"Pod",

Namespace:"ingress", Name:"nginx-ingress-microk8s-controller-n6wmk", UID:"548d9478-

094e-4a19-ba61-284b60152b85", APIVersion:"v1", ResourceVersion:"524688",

FieldPath:""}): type: 'Normal' reason: 'RELOAD' NGINX reload triggered due to a

change in configuration

Some other commands that may yield some interesting data while troubleshooting are:

Verify DNS names and IPs in certificates
In the certs directory under the configuration directory, run:

This will give you output similar to:

and this will allow you to verify that you have the right host names and IP addresses in your
certificates.

for i in $(ls *crt); do echo $i && openssl x509 -in $i -noout -text | grep DNS; done

local.crt

 DNS:local, IP Address:192.168.122.118, IP Address:127.0.0.1

synapse2.local.crt

 DNS:synapse2.local, IP Address:192.168.122.118, IP Address:127.0.0.1

Show hostname to IP mappings from within a pod
Run:

and you will see output similar to:

kubectl exec -n element-onprem <pod_name> -- getent hosts

Other Commands of Interest

This will help you troubleshoot host resolution.

127.0.0.1 localhost

127.0.0.1 localhost ip6-localhost ip6-loopback

10.1.241.30 instance-hookshot-0.instance-hookshot.element-

onprem.svc.cluster.local instance-hookshot-0

192.168.122.5 ems.onprem element.ems.onprem hs.ems.onprem adminbot.ems.onprem

auditbot.ems.onprem integrator.ems.onprem hookshot.ems.onprem admin.ems.onprem

eleweb.ems.onprem

Show all persistent volumes and persistent volume claims for the element-onprem namespace:

This will give you output similar to:

kubectl get pv -n element-onprem

NAME CAPACITY ACCESS MODES RECLAIM

POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pvc-fc3459f0-eb62-4afa-94ce-7b8f8105c6d1 20Gi RWX

Delete Bound container-registry/registry-claim

microk8s-hostpath 8d

integrator-postgres 5Gi RWO

Recycle Bound element-onprem/integrator-postgres

microk8s-hostpath 8d

synapse-postgres 5Gi RWO

Recycle Bound element-onprem/synapse-postgres

microk8s-hostpath 8d

hostpath-synapse-media 50Gi RWO

Recycle Bound element-onprem/first-element-deployment-synapse-media

microk8s-hostpath 8d

adminbot-bot-data 10M RWO

Recycle Bound element-onprem/adminbot-bot-data

microk8s-hostpath 8d

auditbot-bot-data 10M RWO

Recycle Bound element-onprem/auditbot-bot-data

microk8s-hostpath 8d

- **Show the synapse configuration:**

 For installers prior to 2022-05.06, use:

and this will return output similar to:

For the 2022-05.06 installer and later, use:

For the 2023-05.05 installer and later, use:

and you will get output similar to the above.

Show the Element Web configuration:

and this will return output similar to:

kubectl describe cm -n element-onprem app-element-web

config.json:

{

 "default_server_config": {

 "m.homeserver": {

 "base_url": "https://synapse2.local",

 "server_name": "local"

 }

 },

 "dummy_end": "placeholder",

 "integrations_jitsi_widget_url": "https://dimension.element2.local/widgets/jitsi",

 ```bash

 kubectl describe cm -n element-onprem first-element-deployment-synapse-shared

send_federation: True

start_pushers: True

turn_allow_guests: true

turn_shared_secret: n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons

turn_uris:

- turns:turn.matrix.org?transport=udp

- turns:turn.matrix.org?transport=tcp

turn_user_lifetime: 86400000

kubectl -n element-onprem get secret synapse-secrets -o yaml 2>&1 | grep shared.yaml | awk -F 

'shared.yaml: ' '{print $2}' - | base64 -d

kubectl get secrets/first-element-deployment-synapse-secrets -n element-onprem -o yaml | grep 

shared.yaml | awk '{ print $2}' | base64 -d



  "integrations_rest_url": "https://dimension.element2.local/api/v1/scalar",

  "integrations_ui_url": "https://dimension.element2.local/element",

  "integrations_widgets_urls": [

      "https://dimension.element2.local/widgets"

  ]

}

Show the nginx configuration for Element Web: (If using nginx as your ingress controller in
production or using the PoC installer.)

and this will return output similar to:

kubectl describe cm -n element-onprem app-element-web-nginx

  server {

      listen       8080;

      add_header X-Frame-Options SAMEORIGIN;

      add_header X-Content-Type-Options nosniff;

      add_header X-XSS-Protection "1; mode=block";

      add_header Content-Security-Policy "frame-ancestors 'self'";

      add_header X-Robots-Tag "noindex, nofollow, noarchive, noimageindex";

      location / {

          root   /usr/share/nginx/html;

          index  index.html index.htm;

          charset utf-8;

      }

  }

Check list of active kubernetes events:

You will see a list of events or the message No resources found .

kubectl get events -A

Show the state of services in the element-onprem  namespace:

This should return output similar to:

kubectl get services -n element-onprem

NAME                             TYPE        CLUSTER-IP       EXTERNAL-IP   

PORT(S)                    AGE

postgres                         ClusterIP   10.152.183.47    <none>        



5432/TCP                   6d23h

app-element-web                  ClusterIP   10.152.183.60    <none>        

80/TCP                     6d23h

server-well-known                ClusterIP   10.152.183.185   <none>        

80/TCP                     6d23h

instance-synapse-main-headless   ClusterIP   None             <none>        

80/TCP                     6d23h

instance-synapse-main-0          ClusterIP   10.152.183.105   <none>        

80/TCP,9093/TCP,9001/TCP   6d23h

instance-synapse-haproxy         ClusterIP   10.152.183.78    <none>        

80/TCP                     6d23h

Show the status of the stateful sets in the element-onprem  namespace:

This should return output similar to:

kubectl get sts -n element-onprem

NAME                    READY   AGE

postgres                1/1     6d23h

instance-synapse-main   1/1     6d23h

Show deployments in the element-onprem  namespace:

This will return output similar to:

kubectl get deploy -n element-onprem

NAME                       READY   UP-TO-DATE   AVAILABLE   AGE

app-element-web            1/1     1            1           6d23h

server-well-known          1/1     1            1           6d23h

instance-synapse-haproxy   1/1     1            1           6d23h

Show the status of all namespaces:

which will return output similar to:

kubectl get namespaces

NAME                 STATUS   AGE

kube-system          Active   20d

kube-public          Active   20d

kube-node-lease      Active   20d

default              Active   20d

ingress              Active   6d23h



container-registry   Active   6d23h

operator-onprem      Active   6d23h

element-onprem       Active   6d23h

View the MAU Settings in Synapse:

which will return output similar to:

kubectl get  -n element-onprem secrets/synapse-secrets -o yaml | grep -i shared.yaml 

-m 1| awk -F ': ' '{print $2}' - | base64 -d 

# Local custom settings

mau_stats_only: true

limit_usage_by_mau: False

max_mau_value: 1000

mau_trial_days: 2

mau_appservice_trial_days:

  chatterbox: 0

enable_registration_token_3pid_bypass: true

Redeploy the micro8ks setup
It is possible to redeploy microk8s by running the following command as root:

This command does remove all microk8s pods and related microk8s storage volumes. Once this
command has been run, you need to reboot your server - otherwise you may have networking
issues. Add --purge  flag to remove the data if disk usage is a concern.
After the reboot, you can re-run the installer and have it re-deploy microk8s and Element Enterprise
On-Premise for you.

snap remove microk8s

Node-based pods failing name resoution
05:03:45:601 ERROR [Pipeline] Unable to verify identity configuration for bot-auditbot: 

Unknown errcode Unknown error

05:03:45:601 ERROR [Pipeline] Unable to verify identity. Stopping

matrix-pipe encountered an error and has stopped Error: getaddrinfo EAI_AGAIN 

synapse.prod.ourdomain

    at GetAddrInfoReqWrap.onlookup [as oncomplete] (node:dns:84:26) {

  errno: -3001,

  code: 'EAI_AGAIN',

  syscall: 'getaddrinfo',



To see what Hosts are set, try:

So to do this on the adminbot-pipe-0 pod, it would look like:

and return output similar to:

Drop into a shell on the pod

Check it's abililty to send a request to the Synapse server

  hostname: 'synapse.prod.ourdomain'

}

kubectl exec -it -n element-onprem <pod name> getent hosts

kubectl exec -it -n element-onprem adminbot-pipe-0 getent hosts

127.0.0.1       localhost

127.0.0.1       localhost ip6-localhost ip6-loopback

10.1.241.27     adminbot-pipe-0

192.168.122.5   ems.onprem element.ems.onprem hs.ems.onprem adminbot.ems.onprem 

auditbot.ems.onprem integrator.ems.onprem hookshot.ems.onprem admin.ems.onprem 

eleweb.ems.onprem

Node-based pods failing SSL
2023-02-06 15:42:04 ERROR: IrcBridge Failed to fetch roomlist from joined rooms: Error: unable 

to verify the first certificate. Retrying

MatrixHttpClient (REQ-13) Error: unable to verify the first certificate

at TLSSocket.onConnectSecure (_tls_wrap.js:1515:34)

at TLSSocket.emit (events.js:400:28)

at TLSSocket.emit (domain.js:475:12)

at TLSSocket. finishInit (_tls_wrap.js:937:8),

at TLSWrap.ssl.onhandshakedone (_tls_wrap.js:709:12) {

code: 'UNABLE TO VERIFY LEAF SIGNATURE

kubectl exec -it -n element-onprem adminbot-pipe-0 -- /bin/sh

node

require=("http")



The installer creates a default administrator onprem-admin-donotdelete  The Synapse admin user password is
defined under the synapse section in the installer

You can trace webhook calls from your GitHub application under Settings / developer settings / GitHub Apps

Select your GitHub App

Click on Advanced  and you should see queries issues by your app under Recent Deliveries

Check EMS Image Store Username and Token

Check to see if you can pull the Docker image:

request(https://synapse.server/)

Default administrator

Integration issues

GitHub not sending events

Updater and Operator in
ImagePullBackOff  state

https://ems-docs.element.io/uploads/images/gallery/2023-04/SNLscreenshot-2023-04-06-at-12-12-42.png


kubectl get pods -l app.kubernetes.io/instance=element-operator-controller-manager -n operator-
onprem  -o yaml | grep 'image:'

grab the entry like image: gitlab-registry.matrix.org/ems-image-store/standard/kubernetes-
operator@sha256:305c7ae51e3b3bfbeff8abf2454b47f86d676fa573ec13b45f8fa567dc02fcd1

Should look like

microk8s.ctr image pull gitlab-registry.matrix.org/ems-image-store/standard/kubernetes-
operator@sha256:305c7ae51e3b3bfbeff8abf2454b47f86d676fa573ec13b45f8fa567dc02fcd1  -u <EMS Image 
Store usenamer>:<EMS Image Store token>



Please go to the "Element Web" page of the installer, click on "Advanced" and add the following to "Additional
Configuration":

Setting up Permalinks With the Installer

Element Extra Configurations

https://ems-docs.element.io/uploads/images/gallery/2023-02/elewebadvanced.png


Re-run the installer.

{

    "permalinkPrefix": "https://<element fqdn>"

}



From the Installer's Integrations page, click "Install" under "Well-Known Delegation".

Add any client configuration here:

Setting Up Well Known Delegation

Well Known Delegation Configuration

https://ems-docs.element.io/uploads/images/gallery/2023-02/well-known-client.png


A sample client configuration might look like:

Add any server configuration here:

Re-run the installer for the changes to take effect.

  {

    "im.vector.riot.jitsi": {

      "preferredDomain": "jitsi.dev.local"

    }

  }

Troubleshooting the Well Know config

https://ems-docs.element.io/uploads/images/gallery/2023-02/well-known-server.png


The clients and servers will need to be able to access these configuration settings. You can check if everything is
in place with curl. The following request is useful if your base domain is actually the same as your main
webserver. This curl goes directly to the ingress of the kubernetes, which is implemented with nginx. Keeping the
request header as "my.base.domain" allows nginx to route the request to the correct pod.

The above shows a correctly setup well-knwn repsponse, for the direct request to the cluster. In some setups
there is a web server in front of your Element installation. In these cases the main web server should be
implementing a reverse proxy for everything that is under https://my.base.domain/.well-known/matrix/ . All these
requests should be sent to https://matrix.my.base.domain/.well-known/matrix/. If the main web server would run
Apache, the config would look like this :

This is the check :

You can check the ingress logs. Verify the request reaching the nginx and check for the correct path. Replace
${XXXX} with the actual name in your deployment ( $ kubectl get pods -A  will reveal that name ).

$ curl -X GET --header "HOST: my.base.domain" "https://matrix.my.base.domain/.well-

known/matrix/client"

{

    "io.element.e2ee": {

        "default": false

    },

    "m.homeserver": {

        "base_url": "https://matrix.my.base.domain"

    }

    ProxyPass               /.well-known/matrix/ https://matrix.MYBASEDOMAIN/.well-

known/matrix/

    ProxyPassReverse        /.well-known/matrix/ https://matrix.MYBASEDOMAIN/.well-

known/matrix/

    ProxyPreserveHost On

$ curl -X GET https://my.base.domain/.well-known/matrix/client

{

    "io.element.e2ee": {

        "default": false

    },

    "m.homeserver": {

        "base_url": "https://matrix.my.base.domain"

    }

}



$ kubectl logs nginx-ingress-microk8s-controller-${XXXX} -n ingress

...



At present, we support delegating the authentication of users to the following provider interfaces:

LDAP
SAML
OIDC
CAS

When enabling Delegated Auth, you can still allow local users managed by Element to connect to the instance

When Allow Local Users Login  is Enabled , you can both connect to your instance using your IDP and the
local database.

Setting up Delegated Authentication With
the Installer

Delegated Authentication

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-04-at-09-23-54.png


Different options are offered by the installer and you can combine two or more options on the same instance like
enabling SAML and OIDC delegated authentication.

Setting up Delegated Authentication with LDAP on Windows AD

Setting up Delegated Authentication with OpenID on Microsoft Azure

Setting up Delegated Authentication with OpenID on Microsoft AD FS

Note: We are rapidly working to expand and improve this documentation. For now, we are providing screenshots
of working configurations, but in the future, we will better explain the options as well. If you do not see your
provider listed below, please file a support ticket or reach out to your Element representative and we will work to
get you connected and our documentation updated.

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-04-at-14-30-04.png
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-delegated-authentication-with-ldap-on-windows-ad
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-delegated-authentication-with-openid-on-microsoft-azure
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-delegated-authentication-with-openid-on-microsoft-ad-fs


Integrations and Add-Ons



Integrations and Add-Ons

You will have to open the following ports to your microk8s host to enable coturn and jitsi :

For jitsi :

30301/tcp
30300/udp

For coturn, allow the following ports :

3478/tcp
3478/udp
5349/tcp
5349/udp

You will also have to allow the following port range, depending on the settings you define in the installer (see
below) :

<coturn min port>-<coturn max port>/udp

The jitsi and coturn domain names must resolve to the VM access IP. You must not use host_aliases  for these
hosts to resolve to the private IP locally on your setup.

From the Installer's Integrations page, click "Install" under "Coturn".

Setting Up Jitsi and TURN With the
Installer

Configure the Installer to install Jitsi and
TURN

Prerequisites

Firewall

DNS

Coturn



For the coturn.yml presented by the installer, edit the file and ensure the following values are set:

coturn_fqdn : The access address to coturn. It should match something like coturn.<fqdn.tld> . It
must resolve to the public-facing IP of the VM.
shared_secret : A random value, you can generate it with pwgen 32
min_port : The minimal UDP Port used by coturn for relaying UDP Packets, in range 32769-65535
max_port : The maximum UDP Port used by coturn for relaying UDP Packets, in range 32769-65535

https://ems-docs.element.io/uploads/images/gallery/2023-02/coturn.png


Further, for the coturn_fqdn , you will need to provide certificates for the installer outside of the GUI. Please find
your ~/.element-enterprise-server/config  directory and create a directory called ~/.element-enterprise-
server/config/legacy/certs  under which to put a .crt/.key PEM encoded certificate for this fqdn. If your fqdn
was coturn.airgap.local, your filenames would need to be coturn.airgap.local.crt  and
coturn.airgap.local.key . You will need to have these certificate files in place before running the installer.

From the Installer's Integrations page, click "Install" under "Jitsi".

Jitsi



For the jitsi.yml presented by the installer, edit the file and ensure the following values are set:

jitsi_fqdn : The access address to jitsi. It should match something like jitsi.<fqdn.tld> . It must
resolve to the public-facing IP of the VM.
jicofo_auth_password : # a secret internal password for jicofo auth
jicofo_component_secret : # a secret internal password for jicofo component
jvb_auth_password : # a secret internal password for jvb

https://ems-docs.element.io/uploads/images/gallery/2023-02/jitsi.png


helm_override_values : {} # if needed, to override helm settings automatically set by the installer; For

Helm values that can be overriden, see https://vector-im.github.io/jitsi-helm/ For environment variables

that can be passed in via Helm overrides, see https://jitsi.github.io/handbook/docs/devops-

guide/devops-guide-docker/

timezone : Europe/Paris # The timezone in TZ format
stun_servers : Needed if you don't setup coturn using the installer. Should be a yaml list of server:port

entries. Example:

stun_servers: 

- ip:port

- ip:port

Further, for the jitsi_fqdn , you will need to provide .crt/.key PEM encoded certificates. These can be entered
in the installer UI. If your fqdn was jitsi.airgap.local, your filenames would need to be jitsi.airgap.local.crt
and jitsi.airgap.local.key . You will need to edit the file name field in the UI before pressing "Choose File"
button when selecting the certificates.

If your network does not have any NAT, Jitsi cannot use the local coturn server to determine the IP it should
advertise to the users. In this case, you might have issues with your calls and video. To workaround it, you can
use the following configuration :

provide_node_address_as_public_ip: true

helm_override_values:

  jvb:

    extraEnvs:

    - name: JVB_ADVERTISE_IPS

      value:  "public ip of jitsi"

    - name: JVB_ADVERTISE_PRIVATE_CANDIDATES

      value: "true"

Element

https://vector-im.github.io/jitsi-helm/
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones


Please go to the "Element Web" page of the installer, click on "Advanced" and add the following to "Additional
Configuration":

In the above text, you will want to replace <jitsi_fqdn>  with the actual fqdn.

{

  "jitsi": {

    "preferredDomain": "<jitsi_fqdn>"

  }

}

https://ems-docs.element.io/uploads/images/gallery/2023-02/elewebadvanced.png


Please go to the "Element Web" page of the installer, click on "Advanced" and add the following to "Additional
Configuration":

Configure the installer to use an
existing Jitsi instance

{

      "jitsi": {

https://ems-docs.element.io/uploads/images/gallery/2023-02/elewebadvanced.png


replacing your.jitsi.example.org  with the hostname of your Jitsi server.

You will need to re-run the installer for this change to take effect.

Follow the instructions here: https://ems-docs.element.io/books/element-on-premise-documentation/page/single-

node-installations#bkmrk-turn-server

            "preferredDomain": "your.jitsi.example.org"

      }

}

Configure the installer to use an
existing Coturn instance

https://ems-docs.element.io/books/element-on-premise-documentation/page/single-node-installations#bkmrk-turn-server
https://ems-docs.element.io/books/element-on-premise-documentation/page/single-node-installations#bkmrk-turn-server


Integrations and Add-Ons

Group Sync allows you to use the ACLs from your identity infrastructure in order to set up permissions on Spaces
and Rooms in the Element Ecosystem. Please note that the initial version we are providing only supports a single
node, non-federated configuration.

From the Installer's Integrations page, click "Install" under "Group Sync".

Setting up Group Sync with the Installer

What is Group Sync?

Configuring Group Sync

https://ems-docs.element.io/uploads/images/gallery/2023-04/basic-config.png


Leaving Dry Run  checked in combination with Logging Level  set to Debug  gives you the ability to
visualize in the pod's log file what result group sync will produce without effectively creating spaces and
potentially corrupting your database. Otherwise, uncheck Dry Run  to create spaces according to your
spaces mappings defined in the Space mapping  section.
Auto invite groupsync users to public room  determines whether users will be automatically

invited to rooms (default, public and space-joinable). Users will still get invited to spaces regardless of
this setting.

You should create a LDAP account with read access.
This account should use password authentication.

Configuring the source

LDAP Servers



https://ems-docs.element.io/uploads/images/gallery/2023-04/screencapture-3-124-12-184-8443-integrations-groupsync-2023-04-28-14-29-20-copy.png


LDAP Base DN : the distinguished name of the root level Org Unit in your LDAP directory. In our
example, Demo Corp  is our root level, spaces are mapped against Org Units , but you can map a
space against any object (groups, security groups,..) belonging to this root level.

The distinguished name can be displayed by selecting View / Advanced Features  in the Active Directory console
and then, right-clicking on the object, selecting Properties / Attributes Editor .

The DN is OU=Demo corp,DC=olivier,DC=sales-demos,DC=element,DC=io .

Mapping attribute for room name : LDAP attribute used to give an internal ID to the space (visible
when setting the log in debug mode)
Mapping attribute for username : LDAP attribute like sAMAccountName  used to map the localpart of

the mxid against the value of this attribute.
If @bob:my-domain.org  is the mxid, bob  is the localpart and groupsync expects to match this value in
the LDAP attribute sAMAccountName .
LDAP Bind DN : the distinguished name of the LDAP account with read access.
Check interval in seconds : the frequency Group sync refreshes the space mapping in Element.

LDAP Filter : an LDAP filter to filter out objects under the LDAP Base DN.
LDAP URI : the URI of your LDAP server.
LDAP Bind Password : the password of the LDAP account with read access.

You need to create an App registration . You'll need the Tenant ID  of the organization, the
Application (client ID)  and a secret generated from Certificates & secrets  on the app.

For the bridge to be able to operate correctly, navigate to API permissions and ensure it has access to
Group.Read.All, GroupMember.Read.All and User.Read.All. Ensure that these are Application
permissions (rather than Delegated).

MS Graph (Azure AD)

https://ems-docs.element.io/uploads/images/gallery/2023-04/OGQscreenshot-2023-04-28-at-14-05-43.png
https://ldap.com/ldap-filters/


Remember to grant the admin consent for those.
To use MSGraph source, select MSGraph as your source.

msgraph_tenant_id : This is the "Tenant ID" from your Azure Active Directory Overview
msgraph_client_id : Register your app in "App registrations". This will be its "Application (client)

ID"
msgraph_client_secret  : Go to "Certificates & secrets", and click on "New client secret". This

will be the "Value" of the created secret (not the "Secret ID").

The space mapping mechanism allows us to configure spaces that Group Sync will maintain, beyond the ones
that you can create manually.

It is optional – the configuration can be skipped but if you enable Group Sync, you have to edit the Space
mapping by clicking on the EDIT  button and rename the (unnamed space) to something meaningful.

Include all users in the directory in this space : all available users, regardless of group memberships
join the space. This option is convenient when creating a common subspace shared between all users.

Space Mapping

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-03-at-14-30-55.png


When clicking on Add new space , you can leave the space as a top level space or you can drag and drop this
space onto an existing space, making this space a subspace of the existing space.

You can then map an external ID (the LDAP distinguished name) against a power level. Every user belonging to
this external ID is granted the power level set in the interface. This external ID that can be any LDAP object like
an OrgUnit, a Group or a Security Group

A power level 0 is a default user that can write messages, react to messages and delete his own messages.

A power level 50 is a moderator that can creates rooms, delete messages from members.

A power level 100 is an administrator but since GroupSync manages spaces, invitations to the rooms, it does not
make sense to map a group against a power level 100.

Custom power levels other than 0 and 50 are not supported yet.

Users allowed un every GrupSync room

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-09-at-16-57-23.png


A list of userid patterns that will not get kicked from rooms even if they don't belong to them according to LDAP.

This is useful for things like auditbot if Audibot has been enabled.

Patterns listed here will be wrapped in ^ and $ before matching.

Defaults Rooms

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-09-at-16-05-13.png


A list of rooms added to every space

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-09-at-16-30-39.png


Integrations and Add-Ons

In Element Server Suite, our GitLab, GitHub, and JIRA extensions are provided by the hookshot package. This
documentation explains how to configure hookshot.

From the Installer's Integrations page, click "Install" under "Hookshot: Github, Gitlab, Jira, and Custom
Webhooks."

Setting up GitLab, GitHub, JIRA and
Webhooks Integrations With the Installer

Configuring Hookshot with the Installer



On the first screen here, we can set the logging level and a hookshot specific verify tls setting. Most users can
leave these alone.

To use hookshot, you will need to generate a hookshot password key, when can be done by running the following
command on a Linux command line:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot1.png


which will generate output similar to this:

Once this has finished, you will have a file called passkey.pem that can use to upload as the "Hookshot Password
key".

If you wish to change the hookshot provisioning secret, you can, but you can also leave this alone as it is
randomly generated by the installer.

openssl genpkey -out passkey.pem -outform PEM -algorithm RSA -pkeyopt rsa_keygen_bits:4096

..............................................................................................

....................................................................++++

......................................................................................++++



Next, we get to a set of settings that allow us to make changes to the Hookshot bot's appearance.

There is also a button to show widget settings, which brings up these options:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot2.png


In this form, we have the ability to control how widgets are incorporated into rooms (the defaults are usually fine)
and to set a list of Disallowed IP ranges wherein widgets will not load if the homeserver IP falls in the range. If
your homeservers IP falls in any of these ranges, you will want to remove that range so that the widgets will load!

Next, we have the option to enable Gitlab, which shows us the following settings:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot3.png


The webhook secret is randomly generated and does not need to be changed. You can also add Gitlab instances
by specifying an instance name and pasting the URL.

Next, we have the option to enable Jira, which shows us the following settings:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-gitlab.png


In here, we can specify the OAuth Client ID and the OAuth client secret to connect to Jira. To obtain this
information, please follow these steps:

The JIRA service currently only supports atlassian.com (JIRA SaaS) when handling user authentication. Support
for on-prem deployments is hoping to land soon.

You'll first need to head to https://developer.atlassian.com/console/myapps/create-3lo-app/ to create a
"OAuth 2.0 (3LO)" integration.
Once named and created, you will need to:
Enable the User REST, JIRA Platform REST and User Identity APIs under Permissions.
Use rotating tokens under Authorisation.
Set a callback url. This will be the public URL to hookshot with a path of /jira/oauth.
Copy the client ID and Secret from Settings

Once you've set these, you'll notice that a webhook secret has been randomly generated for you. You can leave
this alone or edit it if you desire.

Next, let's look at configuring Webhooks:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-jira.png
https://developer.atlassian.com/console/myapps/create-3lo-app/


You can set whether or not webhooks are enabled and whether they allow JS Transformation functions. It is good
to leave these enabled per the defaults. You can also specify the user id prefix for the creation of custom
webhooks. If you set this to webhook_  then each new webhook will appear in a room with a username starting
with webhook_ .

Next, let's look at configuring Github:

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-webhooks.png


This bridge requires a GitHub App. You will need to create one. Once you have created this, you'll be able to fill
in the Auth ID and OAuth Client ID. You will also need to generate a "Github application key file" to upload this.
Further, you will need to specify a "Github OAuth client secret" and a "Github webhook secret", both of which will
appear on your newly created Github app page.

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-github1.png
https://github.com/settings/apps/new


On this screen, we have the option to change how we call the bot and other minor settings. We also have the
ability to select which hooks we provide notifications for, what labels we wish to exclude, and then which hooks
we will ignore completely.

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-github2.png


Now we have the ability to add a list of labels that we want to match. This has the impact of the integration only
notifying you of issues with a specifc set of labels.

We then have the ability to add a list of labels that all newly created issues through the bot should be labeled
with.

Then we have the ability to enable showing diffs in the room when a PR is created.

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-github3.png


Moving along, we can configure how workflow run results are configured in the bot, including matching specific
workflows and including or excluding specific workflows.

You furrther have the ability to click "Advanced" and set any kubernetes specific settings for how this pod is run.
Once you have set everything up on this page, you can click "Continue" to go back to the Integrations page.

When you have finished running the installer and the hookshot pod is up and running, there are some
configurations to handle in the Element client itself in the rooms that you wish the integration to be present.

As an admin, you will need to invite the hookshot bot into a room. The name can be found in the installer
configuration under the username field in the "Bot" section.

Once you have invited the bot into the room, you can use the "Add widgets, bridges, & bots" functionality to add
the "Hookshot Configuration" widget to the room and finish the setup.

Finishing Configuration

https://ems-docs.element.io/uploads/images/gallery/2023-02/hookshot-github4.png


Integrations and Add-Ons

Adminbot allows for an Element Administrator to become admin in any existing room or space on a managed
homeserver. This enables you to delete rooms for which the room administrator has left your company and other
useful administration actions.

Auditbot allows you to have the ability to export any communications in any room that the auditbot is a member
of, even if encryption is in use. This is important in enabling you to handle compliance requirements that require
chat histories be obtainable.

Currently, we deploy a special version of Element Web to allow you to log in as the adminbot and auditbot. Given
this, please do not make changes to widgets in rooms while logged in as the adminbot or the auditbot. The
special Element Web does not have any custom settings that you have applied to the main Element Web that
your users use and as such, you can cause problems for yourself by working with widgets as the adminbot and
auditbot. In the future, we are working to provide custom interfaces for these bots.

From the Installer's Integrations page, click "Install" under "Admin Bot"

For the adminbot.yml presented by the installer, edit the file and ensure the following values are set:

Let's discuss them:

bot_backup_phrase: This is the security phrase that will guard access to your encryption keys. Do
NOT share this phrase with anyone. This is required.
bot_data_path: This is the directory where the bot's data will be stored. If you need to change the
path, please do, but for most cases, you can leave this alone. If you are deploying to Kubernetes,

Setting up Adminbot and Auditbot

Overview

On using Admin Bot and Audit Bot

Configuring Admin Bot

bot_backup_phrase: adminsecret

bot_data_path: /mnt/data/adminbot

bot_data_size: 10M

enable_dm_admin: false

join_local_rooms_only: true

access_elementweb_fqdn: adminbot.airgap.local



you need to comment this out!
bot_data_size: In most cases, you can leave this at 10M, but it does put a limit on the amount of data
that can be written by the bot to the path.
enable_dm_admin: This defaults to false  and that behavior means that adminbot will not join DMs.
If you want full control of DMs, simply set this to true .
join_local_rooms_only: This defaults to true  and that behavior means that adminbot will only join
rooms on your local homeserver.
access_elementweb_fqdn: You should set this to a hostname that is resolvable in your environment
which will host a special instance of Element Web for logging in. This hostname will need a crt/key
PEM encoded key pair and these files will need to be stored in ~/.element-enterprise-
server/config/legacy/certs  prior to running the installer. In the above example, we have the
hostname of adminbot.airgap.local . This means that the installer expects to find
adminbot.airgap.local.crt  and adminbot.airgap.local.key  in the ~/.element-enterprise-

server/config/legacy/certs` directory. If you are using Let's Encrypt, you do not need to add these files.
verify_tls : Optional. If doing a POC with self-signed certificates, set this to 0. Defaults to 1.

From the Installer's Integrations page, click "Install" under "Audit Bot"

For the auditbot.yml presented by the installer, edit the file and ensure the following values are set:

Let's discuss them:

Configuring Audit Bot

bot_backup_phrase: auditsecret

bot_data_path: /mnt/data/auditbot

bot_data_size: 10M

join_local_rooms_only: true

enable_dm_audit: false

access_elementweb_fqdn: auditbot.airgap.local

### optional :the S3 bucket where to store the audit logs

#s3_bucket:

#s3_access_key_id:

#s3_secret_access_key:

#s3_key_prefix:

#s3_region:

#s3_endpoint:

### optional : the local logfile settings. Used if s3 bucket is not enabled.

logfile_size: 1M

logfile_keep: 3



bot_backup_phrase: This is the security phrase that will guard access to your encryption keys. Do
NOT share this phrase with anyone. This is required.
bot_data_path: This is the directory where the bot's data will be stored. If you need to change the
path, please do, but for most cases, you can leave this alone. If you are deploying to Kubernetes,
you need to comment this out!
bot_data_size: In most cases, you can leave this at 10M, but it does put a limit on the amount of data
that can be written by the bot to the path.
join_local_rooms_only: This defaults to true  and that behavior means that adminbot will only join
rooms on your local homeserver.
enable_dm_admin: This defaults to false  and that behavior means that adminbot will not join DMs.
If you want full control of DMs, simply set this to true .
access_elementweb_fqdn: You should set this to a hostname that is resolvable in your environment
which will host a special instance of Element Web for logging in. This hostname will need a crt/key
PEM encoded key pair and these files will need to be stored in ~/.element-enterprise-
server/config/legacy/certs  prior to running the installer. In the above example, we have the
hostname of auditbot.airgap.local . This means that the installer expects to find
auditbot.airgap.local.crt  and auditbot.airgap.local.key  in the ~/.element-enterprise-

server/config/legacy/certs` directory. If you are using Let's Encrypt, you do not need to add these files.
verify_tls : Optional. If doing a POC with self-signed certificates, set this to 0. Defaults to 1.

Complete the values for the provided central.yml in the installer interface. Here is an explanation of the
parameters:

adminbot_fqdn  : The FQDN which will be targeted by remote federated servers as the central audit
server
remote_federated_homeservers : A list containing every remote audited server. It contains the

following variables :
matrix_server : URL of the synapse server
domain_name : Domain name from parameters.yaml (the server name part of the users mxid)

If the server is managed by the installer :
generic_shared_secret : The generic shared secret to get from secrets.yaml
adminuser_token : The token from the admin user, to get via kubectl get 
synapseusers/adminuser-donotdelete -n element-onprem -o yaml . It's the value of the
field status.accessToken .

If the server is not managed by the installer :
as_token  : The as token configured on the remote appservice file on the remote server.
hs_token  : The as token configured on the remote appservice file on the remote server.
adminuser_token  : An access token to an user which is server admin.

Complete the access.yml file in the installer interface by providing the fqdn of the central admin bot server.

central_adminbot_fqdn  : The value of adminbot_fqdn  on the central audit bot server

Adminbot Federation

On the central admin bot server

On the remote admin bot server



Complete the values for the provided central.yml in the installer interface. Here is an explanation of the
parameters:

auditbot_fqdn  : The FQDN which will be targeted by remote federated servers as the central audit
server
remote_federated_homeservers : A list containing every remote audited server. It contains the

following variables :
matrix_server : URL of the synapse server
domain_name : Domain name from parameters.yaml (the server name part of the users mxid)

If the server is managed by the installer :
generic_shared_secret : The generic shared secret to get from secrets.yaml
adminuser_token : The token from the admin user, to get via kubectl get 
synapseusers/adminuser-donotdelete -n element-onprem -o yaml . It's the value of the
field status.accessToken .

If the server is not managed by the installer :
as_token  : The as token configured on the remote appservice file on the remote server.
hs_token  : The as token configured on the remote appservice file on the remote server.
adminuser_token  : An access token to an user which is server admin.

Complete the access.yml file in the installer interface by providing the fqdn of the central audit bot server.

central_auditbot_fqdn  : The value of auditbot_fqdn  on the central audit bot server

Auditbot Federation

On the central auditbot server

On the remote audit bot server



Integrations and Add-Ons

From the Installer's Integrations page, click "Install" under "Hydrogen".

For the hydrogen.yml presented by the installer, edit the file and ensure the following values are set:

hydrogen_fqdn  is the FQDN that will be used for accessing hydrogen. It must have a PEM formatted
SSL certificate as mentioned in the introduction. The crt/key pair must be in the
CONFIG_DIRECTORY/certs  directory.
extra_config  is extra json config that should be injected into the hydrogen client configuration.

You will need to re-run the installer after making these changes for them to take effect.

Setting Up Hydrogen

Configuring Hydrogen



Integrations and Add-Ons

From the Installer's Integrations page, click "Install" under "Prometheus"

For the provided prom.yml, see the following descriptions of the parameters:

If you want to write prometheus data to a remote prometheus instance, please define these 4 variables
:

remote_write_url : The URL of the endpoint to which to push remote writes
remote_write_external_labels : The labels to add to your data, to identify the writes from this

cluster
remote_write_username : The username to use to push the writes
remote_write_password : The password to use to push the writes

You can configure which prometheus components you want to deploy :
deploy_prometheus : true  to deploy prometheus
deploy_node_exporter : requires prometheus deployment. Set to true  to gather data about the k8s

nodes.
deploy_kube_control_plane_monitoring : requires prometheus deployment. Set to true  to gather

data about the kube controle plane.
deploy_kube_state_metrics : requires prometheus deployment. Set to true  to gather data about

kube metrics.
deploy_element_service_monitors : Set to true  to create ServiceMonitor  resources into the K8S

cluster. Set it to true  if you want to monitor your element services stack using prometheus.
You can choose to deploy grafana on the cluster :

deploy_grafana : true
grafana_fqdn : The FQDN of the grafana application
grafana_data_path : /mnt/data/grafana
grafana_data_size : 1G

If doing a POC with self-signed certificates:
verify_tls  : Optional. If doing a POC with self-signed certificates, set this to 0. Defaults to 1.

For the specified grafana_fqdn , you will need to provide a crt/key PEM encoded key pair in ~/.element-
enterprise-server/config/legacy/certs  prior to running the installer. If our hostname were
metrics.airgap.local , the installer will expect to find metrics.airgap.local.crt  and
metrics.airgap.local.key  in the ~/.element-enterprise-server/config/legacy/certs` directory. If you are using

Let's Encrypt, you do not need to add these files.

After running the installer, open the FQDN of Grafana. The initial login user is admin  and password is admin .
You'll be required to set a new password, please define one secured and keep it in a safe place. ~

Setting up On-Premise Metrics

Setting up prometheus and grafana



Integrations and Add-Ons

Login to my.telegram.org to get a telegram app ID and hash (get from ). You should use a phone
number associated to your company.

From the Installer's Integrations page, click "Install" under "Telegram Bridge".

For the provided telegram.yml file, please see the following options:

postgres_create_in_cluster : true  to create the postgres db into the k8s cluster. On a standalone
deployment, it is necessary to define the postgres_data_path .
postgres_fqdn : The fqdn of the postgres server. If using postgres_create_in_cluster , you can

choose the name of the workload.
postgres_data_path : "/mnt/data/telegram-postgres"
postgres_port : 5432
postgres_user : The user to connect to the db.
postgres_db : The name of the db.
postgres_password : A password to connect to the db.
telegram_fqdn : The FQDN of the bridge for communicating with Telegram and using public login user

interface.
max_users : Max number of users enabled on the bridge.
bot_username : The username of the bot for users to manage their bridge connectivity.
bot_display_name : The display name of the bot.
bot_avatar : An mx content URL to the bot avatar.
admins : The list of admins of the bridge.
enable_encryption : true to allow e2e encryption in bridge.
enable_encryption_by_default : true to enable by default e2e encryption on every chat created by

the bridge.
enable_public_portal : true to give the possibility to users to login using the bridge portal UI.
telegram_api_id : The telegram API ID you got from telegram platform.
telegram_api_hash : The telegram api hash you got from telegram platform.

For the specified telegram_fqdn , you will need to provide a crt/key PEM encoded key pair in ~/.element-
enterprise-server/config/legacy/certs  prior to running the installer. If our hostname were
telegram.airgap.local , the installer will expect to find telegram.airgap.local.crt  and
telegram.airgap.local.key  in the ~/.element-enterprise-server/config/legacy/certs` directory. If you are using

Let's Encrypt, you do not need to add these files.

Setting Up the Telegram Bridge

Configuring Telegram bridge

On Telegram platform

Basic config

https://ems-docs.element.io/my.telegram.org


You will need to re-run the installer after making changes for these to take effect.

Talk to the telegram bot to login to the bridge. See Telegram Bridge starting at "Bridge Telegram to
your Element account". Instead of addressing the bot as that document explains, use
"@bot_username:domain" as per your setup.

Usage

https://ems-docs.element.io/books/element-cloud-documentation/page/telegram-bridge


Integrations and Add-Ons

You will first need to generate an "Application" to serve connect your Teams bridge with Microsoft.

Connect to Azure on

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview to go to the
Active Directory.
Go to "Register an application screen" and register an application.
Supported account types can be what fits your needs, but do not select "Personal Microsoft accounts"
Redirect URI must be https://<teams_fqdn>/authenticate . You must use the type Desktop and 
Mobile apps . You don't need to check any of suggested redirection URIs.
You should be taken to a general configuration page. Click Certificates & secrets
Generate a Client Secret and copy the resulting value. The value will be your teams_client_secret .

You will need to set some API permissions.

For each of the list below click Add permission > Microsoft Graph > and then set the Delegated permissions.

ChannelMessage.Read.All - Delegated
ChannelMessage.Send - Delegated
ChatMessage.Read - Delegated
ChatMessage.Send - Delegated
ChatMember.Read - Delegated
ChatMember.ReadWrite - Delegated
Group.ReadWrite.All - Delegated
offline_access - Delegated
profile - Delegated
Team.ReadBasic.All - Delegated
User.Read - Delegated
User.Read.All - Delegated

For each of the list below click Add permission > Microsoft Graph > and then set the Application permissions:

ChannelMember.Read.All - Application
ChannelMessage.Read.All - Application
Chat.Create - Application
Chat.Read.All - Application
Chat.ReadBasic.All - Application
Chat.ReadWrite.All - Application
ChatMember.Read.All - Application
ChatMember.ReadWrite.All - Application

Setting Up the Teams Bridge

Configuring Teams Bridge

Register with Microsoft Azure

Permissions

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview


ChatMessage.Read.All - Application
Group.Create - Application
Group.Read.All - Application
Group.ReadWrite.All - Application
GroupMember.Read.All - Application
GroupMember.ReadWrite.All - Application
User.Read.All - Application

Once you are done, click Grant admin consent

Go to Overview
Copy the "Application (client) ID" as your teams_client_id  in the config
Copy the "Directory (tenant) ID" as the teams_tenant_id  in the config.

The bridge requires a Teams user to be registered as a "bot" to send messages on behalf of Matrix users. You
just need to allocate one user from the Teams interface to do this.

First, you must go to the Azure Active Directory page.
Click users.
Click New user.
Ensure Create user is selected.
Enter a User name ex. "matrixbridge".
Enter a Name ex. "Matrix Bridge".
Enter an Initial password.
Create the user.
Optionally, set more profile details like an avatar.
You will now need to log in as this new bot user to set a permanent password (Teams requires you to
reset the password on login).
After logging in you should be prompted to set a new password.
Enter the bot username and password into config under teams_bot_username  and
teams_bot_password

The groupId can be found by opening Teams, clicking ... on a team, and clicking "Get link to team". The groupId
is included in the URL 12345678-abcd-efgh-ijkl-lmnopqrstuvw  in this example.

Setting up the bot user

Getting the groupId

https://teams.microsoft.com/l/team/19%3XXX%40thread.tacv2/conversations?groupId=12345678-abcd-

efgh-ijkl-lmnopqrstuvw&tenantId=87654321-dcba-hgfe-lkji-zyxwvutsrqpo

On the hosting machine

Generate teams registration keys



These keys need to be placed in ~/.element-enterprise-server/config/legacy/certs/teams  on the machine
that you are running the installer on.

From the Installer's Integrations page, click "Install" under "Microsoft Teams Bridge"

For the provided teams.yml, please the following documentation of the parameters:

openssl genrsa -out teams.key 1024

openssl req -new -x509 -key teams.key -out teams.crt -days 365

Configure Teams Bridge

teams_client_id: # teams app client id

teams_client_secret: # teams app secret

teams_tenant_id: # teams app tenant id

teams_bot_username: # teams bot username

teams_bot_password: # teams bot password

teams_cert_file: teams.crt

teams_cert_private: teams.key

teams_fqdn: <teams bridge fqdn>

teams_bridged_groups:

- group_id: 218b0bfe-05d3-4a63-8323-846d189f1dc1 #change me

  properties:

    autoCreateRooms:

      public: true

      powerLevelContent:

        users:

          "@alice:example.com": 100 # This will add <alice> account as admin

          "@teams-bot:example.com": 100 # the Teams bot mxid 

<bot_sender_localpart>:<domain_name>

    autoCreateSpace: true

    limits:

      maxChannels: 25

      maxTeamsUsers: 25

# repeat "- group_id:" section above for each Team you want to bridge

bot_display_name: Teams Bridge Bot

bot_sender_localpart: teams-bot

enable_welcome_room: true

welcome_room_text: |



For each Bridged Group, you will need to set a group_id and some properties found in the config
sample.

You will need to re-run the installer for changes to take effect.

 Welcome, your Element host is configured to bridge to a Teams instance.

 This means that Microsoft Teams messages will appear on your Element

 account and you can send messages in Element rooms to have them appear

 on teams.

 To allow Element to access your Teams account, please say `login` and

 follow the steps to get connected. Once you are connected, you can open

 the �� Explore Rooms dialog to find your Teams rooms.

# namespaces_prefix_user: OPTIONAL: default to _teams_

# namespaces_prefix_aliases: OPTIONAL: default to teams_



Integrations and Add-Ons

The IRC bridge allows you to bridge IRC servers into your Element server.

From the Installer's Integrations page, click "Install" under "IRC Bridge"

Edit the provided bridge.yml based on the following documentation:

key_file: irc-passkey.pem  To generate the irc-passkey.pem file, please run the following in the
~/.element-enterprise-server/legacy/certs/  directory: openssl genpkey -out passkey.pem -
outform PEM -algorithm RSA -pkeyopt rsa_keygen_bits:2048
postgres_fqdn: ircbridge-postgres  Use ircbridge-postgres  if using postgres-create-in-
cluster  otherwise point this at your external database.
postgres_user: ircbridge  Leave this if you are using postgres-create-in-cluster .
postgres_db: ircbridge  Leave this if you are using postgres-create-in-cluster .
postgres_password: postgres_password  Set this to either your password for the user connecting to

an existing database, or if using postgres_create_in_cluster , set this to a new password with
pwgen 32 1 .
# postgres_create_in_cluster: true  # uncomment if you want the installer to install postgresql for

you. Not supported with the multi-node installer, where you must use an external postgres.
postgres_port  Can be used to specify a non-standard port. 5432 is used if not specified. Optional
postgres_sslmode  Can be used to specify the sslmode for the Postgres connection. Options are

'disable', 'no-verify' or 'verify-full'. 'disable' is used if not specified. Optional
Now specify a list of Matrix IDs that have admin access to the IRC bridge such as:

admins:

- "@adminuser:dev.local"

- "@adminuser2:dev2.local"

enable_presence: true  This determines if presence is presented to IRC or not.
drop_matrix_messages_after_seconds: 0
bot_username: "ircbridgebot"  The name of the bot.
enable_ident: false  Whether or not to enable IRC ident.
ident_port_type: # HostPort or NodePort  Required if enabling ident.
ident_port_number: 10230  Required if enabling ident.
logging_level: info  Set the default logging level of the bridge.
enable_provisioning: true

Next, we have the provisioning rules section, which will make sure that rooms are not bridged if a match is made
on these rules. This is useful for preventing bad actors on Matrix from flooding IRC. This section looks like:

Setting Up the IRC Bridge

Overview

provisioning_rules:

 # The bridge checks the joined members of a propective room and checks to see

 # if any users matching these regex sets are in the room. `exempt` users never



rmau_limit: 100  Set this to the maximum number of remote monthly active users that you would like
to allow in a bridged IRC room.
users_prefix: "irc_"  Set a user prefix for irc users.
alias_prefix: "irc_"  Set an alias prefix for irc users.
address: irc.someserver.net  The adress of the irc server to bridge. Now for the above IRC server,

we have a set of parameters that can be set:
name: "Server Name"  The server name to show on the bridge. Now below that, you'll see the

botConfig with these parameters:
enabled: true  Leave this on.
nick: "MatrixBot"  Nick of the bridge bot
username: "matrixbot"  Username of the bridge bot.
password: "some_password"  Password of the bridge bot. Generate this with pwgen 32 1

For other settings that can also be applied to this config file, please see:https://github.com/matrix-org/matrix-

appservice-irc/blob/develop/config.sample.yaml#L52

You will need to re-run the installer for changes to take effect.

1. From Element, send a DM to the bridge bot /msg @ircbridgebot:element.local  where
element.local  is you servers domain name

2. Send the bridge !whois  to see if you can get logged in to the IRC network

 # match, and will be ignored. If any user matches `conflict`, the room will not

 # be allowed to be bridged until the user is removed. Both sets take a regular expression.

 userIds:

   exempt:

     # These users never conflict, even if matching

     - "@doubleagent:badguys.com"

   conflict:

     # These users will deny a room from being bridged.

     - "@.*:badguys.com"

provisioning_room_limit: 50

Connecting to the Bridge

https://github.com/matrix-org/matrix-appservice-irc/blob/develop/config.sample.yaml#L52
https://github.com/matrix-org/matrix-appservice-irc/blob/develop/config.sample.yaml#L52


Integrations and Add-Ons

From the Installer's Integrations page, click "Install" under "SIP Bridge"

For the provided sipbridge.yml, please see the following documentation:

Setting Up the SIP Bridge

Configuring SIP bridge

Basic config

- `postgres_create_in_cluster`: `true` to create the postgres db into the k8s cluster. On a 

standalone deployment, it is necessary to define the `postgres_data_path`.

- `postgres_fqdn`: The fqdn of the postgres server. If using `postgres_create_in_cluster`, you 

can choose the name of the workload.

- `postgres_data_path`: "/mnt/data/sipbridge-postgres"

- `postgres_port`: 5432

- `postgres_user`: The user to connect to the db.

- `postgres_db`: The name of the db.

- `postgres_password`: A password to connect to the db.

- `port_type`: `HostPort` or `NodePort` depending on which kind of deployment you want to use. 

On standalone deployment, we advise you to use `HostPort` mode.

- `port`: The port on which to configure the SIP protocol. On `NodePort` mode, it should be in 

kubernetes range:

- `enable_tcp`: `true` to enable TCP SIP.

- `pstn_gateway`: The hostname of the PSTN Gateway.

- `external_address`: The external address of the SIP Bridge

- `proxy` : The address of the SIP Proxy

- `user_agent`: A user agent for the sip bridge.

- `user_avatar`: An MXC url to the sip bridge avatar. Don't define it if you have not uploaded 

any avatar.

- `encryption_key`: A 32 character long secret used for encryption. Generate this with `pwgen 

32 1`



Integrations and Add-Ons

The XMPP bridge relies on the xmpp "component" feature. It is an equivalent of matrix application services. You
need to configure an XMPP Component on an XMPP Server that the bridge will use to bridge matrix and xmpp
user.

From the Installer's Integrations page, click "Install" under "XMPP Bridge".

For the provided xmpp.yml, please use the following documentation to configure the bridge:

xmpp_service : XMPP Address of the service endpoint.
xmpp_domain : The XMPP FQDN with the External Component subdomain (i.e.

element.xmpp.example.com)
bot_username : The xmpp bot username on matrix
alias_prefix : The prefix for bridged aliases
user_prefix : The prefix for bridged users
enable_portals_gateway : true  to enable portals.
xmpp_component_password : Xmpp component password
postgres_create_in_cluster : true  if you want the installer to automatically set up postgres.

Requiers postgres_data_path  if using this.
postgres_fqdn : PostgreSQL server fqdn or ip
postgres_user : PostgreSQL username
postgres_db : PostgreSQL database
postgres_port : PostgreSQL port, default to 5432
postgres_password : PostgreSQL password
postgres_create_in_cluster : Whether or not to create the postgres as a k8s statefulset

Re-run the installer

In all the examples below the following are set:

The domain_name  is your homeserver domain ( the part after : in your MXID ) : element.local
XMPP Server FQDN: xmpp.example.com
XMPP External Component/ xmpp_domain : element.xmpp.example.com

If you are configuring prosody, you need the following component configuration (for the sample xmpp server,
element.xmpp.example.com ):

Setting Up the XMPP Bridge

Configuring the XMPP Bridge

On the hosting machine

Prosody Example



And then with that configured, you would pass the following into xmpp.yml :

Note: We've used pwgen 32 1  to generate the component_secret .

Once you have the XMPP bridge up, you need to map an XMPP room to a Matrix ID. For example, if the room on
XMPP is named: #iwotevo@conference.xmpp.lab.element.com

(conference is the fqdn of the component's hosting rooms on our xmpp test instance)

then on Matrix, you would join:

The command to do that from within the Element client would be: (assuming your homeserver domain is
example.com)

If the Element/Matrix room is public you should be able to query the room list at the external component server
address(Ex: element.xmpp.example.com)

The Matrix room at alias #roomname:element.local  maps to
#roomname#element.local@element.xmpp.example.com  on the XMPP server xmpp.example.com if yout
xmpp_domain: element.xmpp.example.com

Element XMPP

    Component "element.xmpp.example.com"

        ssl = {

          certificate = "/etc/prosody/certs/tls.crt";

          key = "/etc/prosody/certs/tls.key";

        }

      component_secret = "eeb8choosaim3oothaeGh0aequiop4ji"

xmpp_service: xmpp://xmpp.example.com:5347

xmpp_domain: "element.xmpp.example.com" # external component subdomain

xmpp_component_password: eeb8choosaim3oothaeGh0aequiop4ji # xmpp component password

Joining an XMPP Room

#_xmpp_iwotevo_conference.xmpp.example.com:element.local

/join #_xmpp_iwotevo_conference.xmpp.example.com:element.local

Joining a Matrix room from XMPP



#roomname:element.local (native Matrix
room)

?
#roomname
#element.local@element.xmpp.example.co
m (bridged into XMPP)

#_xmpp_roomname
_conference.xmpp.example.com:element.lo
cal (bridged into Matrix/Element)

?
#roomname
@conference.xmpp.example.com (native
XMPP room)



Integrations and Add-Ons

The ability to send a location share, whether static or live, is available without any additional configuration.

However, when receiving a location share, in order to display it on a map, the client must have access to a tile
server. If it does not, the location will be displayed as text with coordinates.

By default, location sharing uses a MapTiler instance and API key that is sourced and paid for by Element. This is
provided free, primarily for personal EMS users and those on Matrix.org.

If no alternate tileserver is configured either on the HomeServer or client then the mobile and desktop
applications will fall back to Element's MapTiler instance. Self-hosted instances of Element Web will not fall back,
and will show an error message.

Customers should be advised that our MapTiler instance is not intended for commercial use, it does not come
with any uptime or support SLA, we are not under any contractual obligation to provide it or continue to provide it,
and for the most robust privacy customers should either source their own cloud-based tileserver or self-host one
on-premises.

However, if they wish to use our instance with Element Web for testing, demonstration or POC purposes, they
can configure the map_style_url by adding extra configurations in the advanced section of the Element Web page
in the installer:

If the customer sources an alternate tileserver, whether from MapTiler or elsewhere, you should enter the
tileserver URL in the extra_client  section of the Well-Known Delegation Integration accessed from the
Integrations page in the Installer:

Setting up Location Sharing

Overview

Using Element's MapTiler instance

{

   "map_style_url": 

"https://api.maptiler.com/maps/streets/style.json?key=fU3vlMsMn4Jb6dnEIFsx"

}

Using a different tileserver



Customers can also host their own tileserver if they wish to dedicate the resources to doing so. Detailed

information on how to do so is available here.

{

... other info ...

"m.tile_server": {

"map_style_url": "http://mytileserver.example.com/style.json"

}

Self-hosting a tileserver

https://matrix.org/docs/guides/map-tile-server


Integrations and Add-Ons

Today, if you remove a Yaml integration's config, its components will not be removed from the cluster
automatically. You will also need to manually remove the custom resources from the Kubernetes cluster.

More details to come soon.

Removing Legacy Integrations



Support Policies



Support Policies

For Element Enterprise On-Premise, we support the following:

Installation and Operation (Configuring the Installer, Debugging Issues)
Synapse Usage/Configuration/Prioritised Bug Fixes
Element Web Usage/Configuration/Prioritised Bug Fixes
Integrations

Delegated Auth (e.g. SAML/LDAP) (Add-on)
Group Sync (LDAP, AD Graph API, SCIM supported) (Add-on)
Github / Gitlab
JIRA
Webhooks
Jitsi
Chatterbox (Add-on)
Adminbot (Add-on)
Auditbot (Add-on)

For Element On-Premise, we support the following:

Installation and Operation (Configuring the Installer, Debugging Issues)
Synapse Usage/Configuration/Prioritised Bug Fixes
Element Web Usage/Configuration/Prioritised Bug Fixes
Integrations

Github / Gitlab
JIRA
Webhooks
Jitsi

The following items are not included in support coverage:

General Infrastructure Assistance
K8s Assistance
Operating System Support
Postgresql Database Support

For single node setups, the following also applies:

Element does not support deployment to a microk8s that was not installed by our installer.
Element does not provide a backup solution.
Element does not provide support for any underlying storage.

For kubernetes deployments, the following also applies:

Element does not support deploying the installer created postgresql in a kubernetes environment.
Element requires that you deploy postgresql separately in a kubernetes environment, external to your
Element deployment.

On-Premise Support Scope of Coverage



Support Policies

List of what is supported for this setup exists.
Element supports the installation of microk8s using our installer on all installer supported
platforms.
Element supports upgrading microk8s using our installer on all installer supported platforms.
Element supports the installation, configuration, and maintenance of our on-premise software
delivered by the installer running on microk8s.
Element provides diagnosis and bug fixes for our on-premise software delivered by the installer
running on microk8s.

List of what is not supported in this setup exists.
Element does not support the underlying operating system.
Element does not support deployment to microk8s that was installed separately from our
installer.
Element does not provide a backup solution.
Element does not provide support for any underlying storage.

Create a checklist of what makes a single node production workload.
RHEL 8+ or Ubuntu 20.04+
microk8s installed and running.
Customer provided backup solution in place.
Customer managed storage in place.
synapse, haproxy, and element-web all running.
Optionally, dimension, adminbot, auditbot, group sync, and hookshot may be running as well.

Single Node Scope of Coverage
Addendum



Archived Documentation Repository



Archived Documentation Repository

element-on-premise-documentation (2).pdf

Documentation Covering Installer 2023-
02.02 CLI Only.

https://ems-docs.element.io/attachments/4


Archived Documentation Repository

element-on-premise-documentation.pdf

Documentation Covering Installers From
2022.10.01 to 2023.02.01

https://ems-docs.element.io/attachments/3


Archived Documentation Repository

element-on-premise-documentation-0703-0905.pdf

Documentation Covering Installers From
2022.07.03 to 2022.09.05

https://ems-docs.element.io/attachments/2


Archived Documentation Repository

element-on-premise-documentation-july28-2022.pdf

Documentation covering v1 and installers
prior to 2022-07.03

https://ems-docs.element.io/attachments/1


Appendices



Appendices

Please reach out our Element Sales Team if you want to run a Proof of Concept for Element Server Suite.

Note This guide is for running Proof of Concepts. We don't aim to show every feature here, we want to get you up
and running most quickly. This guide is focusing on connected standalone installations currently. There are
scenarios currently not covered by this guide. Installing into airgapped / disconneted environments, or testing our
Cloud Based offering.

A Proof-of-Concept is done in preparation of a subscription sale with the goal of demonstrating the required
capablities.

1. Create an account on element.io
2. Communication via matrix space
3. PoC preparation

3.1 Preparation of the VM
3.2 DNS names & certificates for the endpoints
3.3 Matrix IDs & Well Known delegation
3.4 Authentication & Postrgres DB

Please create an account on element.io. We will enable this account as part of the PoC process and grant you
access to the Enterprise Server Suite software packages.

The account team will create a matrix room to improve communiclation and invite you. We will need your Matrix

ID (MXID) for this. If you don't already have a MXID, you can create one here by signing up. This will create an
account on matrix.org, you can authenticate via serverial identity providers. Send the MXID to the account team,
so they can add you to the room. You could use the Element Web Client that you used to create the account or
install one of the Element Mobile apps from the App or Playstore.

Element Server Suite can be installed in a Kubernetes Cluster or as a standalone installation on top of an
Operating System (RHEL 8 or Ubuntu 20.04). Most Proof-of-Concept installations will select the Standalone
Installation on top of a VM which we recommend for speed and ease of operation.

Appendix A: Preparing Element Server
Suite PoC

Overview

1. Create an account on element.io

2. Communication via matrix room

3. PoC preparation

https://element.io/contact-sales
https://ems.element.io/user/hosting
https://app.element.io/


Click here for an overview of the Element Server Suite. Here is the link detailing the single node installation.

Please set up a VM with 8 vCPUs and 32GB RAM and 100 GB Storage. If this sounds like a lot of resources to
you, the requirements do in fact vary and could be scaled down later if required. Install Ubuntu 20.04 LTS or
RHEL8. Update the system to the latest available patches and create a user to be used for maintaining the

Element Server Suite. See our documentation for this step here.

You need to select a base domain for the Server. This can differ from the base domain of the matrix IDs but is
often the same. Read more about this in the section on Matrix IDs and Well Known delegation below.

You have chosen eng.acme.com. The following DNS entries must be prepared and point to the external IP of the
VM.

This results in the following hostnames for you :

eng.acme.com (base domain - might already exist )
matrix.eng.acme.com (the synapse homeserver)
element.eng.acme.com (element web)
admin.eng.acme.com (admin dashboard)

Optional for Monitoring and Integrations :

grafana.eng.acme.com (Our Grafana server)
hookshot.eng.acme.com (Our integrations)
integrator.eng.acme.com (integration manager)

Optional for Video Chat with Jitsi :

jitsi.eng.acme.com (Our VoIP platform)
coturn.eng.acme.com (Our TURN server)

Optional for the Admin Backdoor functionality :

roomadmin.eng.acme.com

We require certificates for these hostnames to enable SSL/TLS encryption. The quick and easy way is to use the
embedded letsencrypt. This is only available if you are in a connected environment. You can provide and use

your own certificates.

Matrix IDs have the following format :

@USER:SERVER

3.1 Preparation of the VM

3.2 DNS Names and Certificates

3.3 Matrix IDs & Well Know delegation

https://ems-docs.element.io/books/element-on-premise-documentation/page/introduction-to-element-server-suite
https://ems-docs.element.io/books/element-on-premise-documentation/page/single-node-installations
https://ems-docs.element.io/books/element-on-premise-documentation/page/single-node-installations
https://ems-docs.element.io/books/element-on-premise-documentation/page/single-node-installations#bkmrk-the-certificates-scr


In our example case the matrix server is matrix.eng.acme.com. If a user Tom Maier has a username tmaier in
your LDAP, this would lead to an MXID @tmaier:matrix.eng.acme.com. This is often not desired as we like to
keep the MXIDs short. It is more elegant to drop the "matrix" host name from the MXIDs. Tom's MXID would look
like this @tmaier:eng.acme.com .

In order to be able to offer matrix IDs with the base domain, we recommend setting up a reverse proxy on
eng.acme.com, which forwards https://eng.acme.com/.well-known/matrix/ to the matrix/synapse server on
https://matrix.eng.acme.com/.well-known/matrix . Or you shorten the hostname part of your MXIDs even more to
acme.com, this would require you to put the reverse proxy onto acme.com.

The configuration on your Apache WebServer should be similar to this :

More about well-known and MXIDs can be found in our Upstream Documentation here and here. Further

configurations can be made using the well-known mechanism. An example is documented here.

The quickest setup is using local authentication and users only. This is what we recommend for a first stip in a
Proof-of-Concept situation. User accounts are created in the local Postgresql DB through our Admin UI or
through API scripts for automation in this case. We support many mechanisms for AUthentication like LDAP,
SAML2 and OIDC. We recommend to configure these as a 2nd step only if required.

You have the option to use an internal or external Postgres DB. We do recommend to use the internal Postgres
DB for Proof-of-Concept installations. The internal Postgres DB is only available when you are opting for the
Standalone Installation on top of an Operating System. You will need an external Postgres DB when installing
into an existing Kubernetes cluster.

Please prepare the above items before starting the installation. Make sure you have :

created and communitcated your MXID to the Element Sales Team
registered an account on element.io
created and prepared your vm / machine with enough resources
created DNS entries
decided on letsencrypt / created host certificates for your hostnames
installed the reverse proxy on the webserver of your MXID URL e.g. eng.acme.com or acme.com

Don't hesitate to reach out to your Element Sales Team for support. We are here to guide you.

    ProxyPass               /.well-known/matrix/ https://matrix.eng.acme.com/.well-

known/matrix/

    ProxyPassReverse        /.well-known/matrix/ https://matrix.eng.acme.com/.well-

known/matrix/

    ProxyPreserveHost On

3.4 Authentication and Postgres DB

Checklist before starting the installation

https://matrix.org/docs/guides/understanding-synapse-hosting#how-our-matrixid-will-look-like
https://github.com/matrix-org/synapse/blob/develop/docs/delegate.md
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-well-known-delegation


Before starting with this guide, please contact EMS support from https://ems.element.io/support or by emailing

ems-support@element.io

Except where specified, you should be able to just copy-paste each command in succession.
Please do not change any file names anywhere.

This section outlines what you should do ahead of the migration in order to ensure the migration goes as quickly
as possible and without issues.

At the latest 48 hours before your migration is scheduled, set the TTL on any DNS records that need to
be updated to the lowest allowed value.
Upgrade your Synapse to the same version as EMS is running. Generally this will be the latest stable

release. https://element.ems.host/_matrix/federation/v1/version is a good indicator, but confirm version
with your EMS contact.

This is not required, but if your Synapse version is not the same as the EMS version, your
migration will take longer.

Check the size of your database:
PostgreSQL: Connect to your database and issue the command \l+
SQLite: ls -lah /path/to/homeserver.db

Check the size of your media repository and report to your EMS contact.
Synapse Media Store: du -hs /path/to/synapse/media_store/

Matrix Media Repo: https://github.com/turt2live/matrix-media-

repo/blob/master/docs/admin.md#per-server-usage
If you are using SQLite instead of PostgreSQL, you should port your database to PostgreSQL by

following this guide before dumping your database

You might want to run everything in a tmux  or a screen  session to avoid disruption in case of a lost SSH
connection.

Migration from self-hosted to ESS On-
Premise

Notes

Preparation

SSH to your matrix server

https://ems.element.io/support
mailto:ems-support@element.io
https://element.ems.host/_matrix/federation/v1/version
https://github.com/turt2live/matrix-media-repo/blob/master/docs/admin.md#per-server-usage
https://github.com/turt2live/matrix-media-repo/blob/master/docs/admin.md#per-server-usage
https://matrix-org.github.io/synapse/latest/postgres.html


Follow https://matrix-org.github.io/synapse/latest/upgrade.html

Start Synapse, make sure it's happy Stop Synapse

The guide from here on assumes your current working directory is /tmp/synapse_export .

If you are working as root: (otherwise set restrictive permissions as needed):

Copy the following files and send to EMS Support:

Your Synapse configuration file (usually homeserver.yaml )
Your message signing key.

This is stored in a separate file. See the Synapse config file [ homeserver.yaml ] for the path. The

variable is signing_key_path https://github.com/matrix-

org/synapse/blob/v1.32.2/docs/sample_config.yaml#L1526-L1528

DO NOT START IT AGAIN AFTER THIS
Doing so can cause issues with federation and inconsistent data for your users.

While you wait for the database to export or files to transfer, you should edit or create the well-known files and
DNS records to point to your new EES host. This can take a while to update so should be done as soon as
possible in order to ensure your server will function properly when the migration is complete.

Upgrade Synapse to the same version
EES is running

Create a folder to store everything
mkdir -p /tmp/synapse_export

cd /tmp/synapse_export

Set restrictive permissions on the folder

chmod 000 /tmp/synapse_export

Copy Synapse config

Stop Synapse

https://github.com/matrix-org/synapse/blob/v1.32.2/docs/sample_config.yaml#L1526-L1528
https://github.com/matrix-org/synapse/blob/v1.32.2/docs/sample_config.yaml#L1526-L1528


Replace:

<dbhost>  (ip or fqdn for your database server)
<dbusername>  (username for your synapse database)
<dbname>  (the name of the database for synapse)

[LINK TO ON_PREM SETUP DOCS]

On the new host set the

grab macaroon_secret_key  from homeserver.yaml  and place it in the "Secrets \ Synapse \ Macaroon"

Enter a bash shell on the Synapse postgres container:

kubectl exec -it -n element-onprem synapse-postgres-0 --container postgres  -- /bin/bash

psql -U synapse_user synapse  on postgres container shell

THE FOLLOWING COMMAND WILL ERASE THE EXISTING SYNAPSE DATABASE WITHOUT WARNING
OR CONFIRMATION. PLEASE ENSURE THAT IT IS THE CORRECT DB AND THERE IS NO PRODUCTION
DATA ON IT

Database export

PostgreSQL

Dump, compress

pg_dump -O -h <dbhost> -U <dbusername> -d <dbname> | gzip > synapse_db_export.sql.gz

Setup new host

Import DB

DO $$ DECLARE

r RECORD;

BEGIN

  FOR r IN (SELECT tablename FROM pg_tables WHERE schemaname = current_schema()) LOOP

    EXECUTE 'DROP TABLE ' || quote_ident(r.tablename) || ' CASCADE';

  END LOOP;

END $$;



\q to quit

on host:

on pod: cd /var/lib/postgresql/data

psql -U synapse_user synapse < var/lib/postgresql/data/synapse_export.sql

DROP sequence cache_invalidation_stream_seq;

DROP sequence state_group_id_seq;

DROP sequence user_id_seq;

DROP sequence account_data_sequence;

DROP sequence application_services_txn_id_seq;

DROP sequence device_inbox_sequence;

DROP sequence event_auth_chain_id;

DROP sequence events_backfill_stream_seq;

DROP sequence events_stream_seq;

DROP sequence presence_stream_sequence;

DROP sequence receipts_sequence;

DROP sequence un_partial_stated_event_stream_sequence;

DROP sequence un_partial_stated_room_stream_sequence;

gzip -d synapse_export.sql.gz

sudo cp synapse_export.sql /data/postgres/synapse/



From the Installer's Synapse page, scroll down to Synapse workers view.

Click on Add Workers

Configuring Synapse workers

https://ems-docs.element.io/uploads/images/gallery/2023-06/image-1687357253633.png


You have to select a Worker Type. Here are the workers which can be useful to you :

https://ems-docs.element.io/uploads/images/gallery/2023-06/image-1687357284426.png


1. Pushers : If you experience slowness with notifications sending to clients
2. Client-Reader : If you experience slowness when clients login and sync their chat rooms
3. Synchrotron : If you experience slowness when rooms are active
4. Federation-x : If you are working in a federated setup, you might want to dedicate federation to

workers.

If you are experiencing resources congestion, you can try to reduce the resources requested by each worker. Be
aware that

if the node gets full of memory, it will try to kill containers which are consuming more than what they
requested
if a container consumes more than its memory limit, it will be automatically killed by the node, even if
there is free memory left.

You will need to re-run the installer after making these changes for them to take effect.



In the installer, set the following fields:

Base : the distinguished name of the root level Org Unit in your LDAP directory.
The distinguished name can be displayed by selecting View / Advanced Features  in the Active
Directory console and then, right-clicking on the object, selecting Properties / Attributes Editor .

Base Dn : the distinguished name of the LDAP account with read access.

Filter : an LDAP filter to filter out objects under the LDAP Base DN.
Uri : the URI of your LDAP server.
LDAP Bind Password : the password of the LDAP account with read access.

Setting up Delegated Authentication with
LDAP on Windows AD

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-04-at-17-31-24.png
https://ldap.com/ldap-filters/


https://ems-docs.element.io/uploads/images/gallery/2023-05/screencapture-3-76-146-148-8443-synapse-2023-05-04-17-33-17-copy.png


Before setting up the installer, you have to configure Microsoft Azure Active Directory.

You need to create an App registration .
You have to select Redirect URI (optional)  and set it to https://matrix.your-
domain.com/_synapse/client/oidc/callback

For the bridge to be able to operate correctly, navigate to API permissions, add Microsoft Graph APIs, choose
Delegated Permissions and add

openid
profile

Remember to grant the admin consent for those.

To setup the installer, you'll need

the Application (client) ID
the Directory (tenant) ID
a secret generated from Certificates & secrets  on the app.

Setting up Delegated Authentication with
OpenID on Microsoft Azure

Set up Microsoft Azure Active Directory

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-03-at-16-30-06.png


Add an OIDC provider in the 'Synapse' configuration after enabling Delegated Auth  and set the following fields
in the installer:

Allow Existing Users : if checked, it allows a user logging in via OIDC to match a pre-existing
account instead of failing. This could be used if switching from password logins to OIDC.
Authorization Endpoint : the oauth2 authorization endpoint. Required if provider discovery is

disabled.
https://login.microsoftonline.com/<Directory (tenant) ID>/oauth2/v2.0/authorize
Backchannel Logout Enabled : Synapse supports receiving OpenID Connect Back-Channel Logout

notifications. This lets the OpenID Connect Provider notify Synapse when a user logs out, so that
Synapse can end that user session. This property has to bet set to https://your-
domain/_synapse/client/oidc/backchannel_logout in your identity provider

Client Auth Method : auth method to use when exchanging the token. Set it to Client Secret Post
or any method supported by your Idp
Client ID : your Application (client) ID
Discover : enable/disable the use of the OIDC discovery mechanism to discover endpoints
Idp Brand : an optional brand for this identity provider, allowing clients to style the login flow according

to the identity provider in question
Idp ID : a string identifying your identity provider in your configuration
Idp Name : A user-facing name for this identity provider, which is used to offer the user a choice of

login mechanisms in the Element UI. In the screenshot bellow, Idp Name  is set to Azure AD

Configure the installer

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-02-at-15-39-56.png


Issuer : the OIDC issuer. Used to validate tokens and (if discovery is enabled) to discover the
provider's endpoints
https://login.microsoftonline.com/<Directory (tenant) ID>/v2.0
Token Endpoint : the oauth2 authorization endpoint. Required if provider discovery is disabled.
Client Secret : your secret value defined under "Certificates and secrets"

Scopes: add every scope on a different line
The openid scope is required which translates to the Sign you in permission in the consent UI
You might also include other scopes in this request for requesting consent.

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-04-at-10-45-23.png
https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-03-at-15-20-20.png


User Mapping Provider: Configuration for how attributes returned from a OIDC provider are mapped
onto a matrix user.

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-03-at-17-27-00.png


Localpart Template : Jinja2 template for the localpart of the MXID. Set it to {{ 
user.preferred_username.split('@')[0] }}  for Azure AD
Display Name Template : Jinja2 template for the display name to set on first login. If unset, no

displayname will be set. Set it to {{ user.name }} for Azure AD

Other configurations are documented here.

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-11-at-11-06-39.png
https://matrix-org.github.io/synapse/v1.41/openid.html


Before starting the installation, make sure:

your Windows computer name is correct since you won't be able to change it after having installed AD
FS
you configured your server with a static IP address
your server joined a domain and your domain is defined under Server Manager > Local server
you can resolve your server FQDN like computername.my-domain.com

You can find a checklist here.

Steps to follow:

Install AD CS (Certificate Server) to issue valid certificates for AD FS. AD CS provides a platform for
issuing and managing public key infrastructure [PKI] certificates.
Install AD FS (Federation Server)

You need to install the AD CS Server Role.

Follow this guide.

Before installing AD FS, you are required to generate a certificate for your federation service. The SSL certificate
is used for securing communications between federation servers and clients.

Follow this guide.

Additionally, this guide provides more details on how to create a certificate template.

You need to install the AD FS Role Service.

Follow this guide.

AD FS is installed but not configured.

Click on Configure the federation service on this server  under Post-deployment 
configuration  in the Server Manager .

Setting up Delegated Authentication with
OpenID on Microsoft AD FS

Install Microsoft AD FS

Install AD CS

Obtain and Configure an SSL Certificate for AD FS

Install AD FS

Configure the federation service

https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/checklist--setting-up-a-federation-server
https://learn.microsoft.com/en-us/windows-server/networking/core-network-guide/cncg/server-certs/install-the-certification-authority
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn781428(v=ws.11)
https://learn.microsoft.com/en-us/windows-server/networking/core-network-guide/cncg/server-certs/configure-the-server-certificate-template
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/install-the-ad-fs-role-service


Ensure Create the first federation server in a federation server farm  and is selected

Click Next

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-15-55-57.png


Select the SSL Certificate and set a Federation Service Display Name

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-15-57-41.png


On the Specify Service Account page, you can either Create a Group Managed Service Account
(gMSA) or Specify an existing Service or gMSA Account

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-15-59-27.png


Choose your database

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-16-04-13.png


Review Options , check prerequisites are completed and click on Configure
Restart the server

To enable sign-in for users with an AD FS account, create an Application Group in your AD FS.
To create an Application Group, follow theses steps:

In Server Manager , select Tools , and then select AD FS Management
In AD FS Management, right-click on Application Groups  and select Add Application Group
On the Application Group Wizard Welcome  screen

Enter the Name of your application
Under Standalone applications  section, select Server application  and click Next

Add AD FS as an OpenID Connect identity provider

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-16-05-50.png


Enter https://<matrix domain>/_synapse/client/oidc/callback  in Redirect URI: field, click Add ,
save the Client Identifier  somewhere, you will need it when setting up Element and click Next
(e.g. https://matrix.domain.com/_synapse/client/oidc/callback)

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-16-39-52.png


Select Generate a shared secret  checkbox and make a note of the generated Secret and press
Next  (Secret needs to be added in the Element Installer GUI in a later step)

Right click on the created Application Group and select `Properties``

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-16-45-44.png


Select Add application...  button.
Select Web API
In the Identifier  field, type in the client_id  you saved before and click Next

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-22-at-16-56-40.png


Select Permit everyone  and click Next
Under Permitted scopes: select openid  and profile  and click Next

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-23-at-09-48-07.png


On Summary  page, click `Next``
Click Close  and then OK

Run mmc.exe
Add the Certificates  snap-in

File/Add snap-in for Certificates , Computer account
Under Trusted Root Certification Authorities / Certificates , select your DC cert
Right click and select All Tasks / Export...  and export as Base-64 encoded X 509 (.CER)
Copy file to local machine

Add an OIDC provider in the 'Synapse' configuration after enabling Delegated Auth  and set the following fields
in the installer:

Allow Existing Users : if checked, it allows a user logging in via OIDC to match a pre-existing
account instead of failing. This could be used if switching from password logins to OIDC.
Authorization Endpoint : the oauth2 authorization endpoint. Required if provider discovery is

disabled.

Export Domain Trusted Root Certificate

Configure the installer

https://ems-docs.element.io/uploads/images/gallery/2023-06/screenshot-2023-06-23-at-09-51-06.png


https://login.microsoftonline.com/<Directory (tenant) ID>/oauth2/v2.0/authorize
Backchannel Logout Enabled : Synapse supports receiving OpenID Connect Back-Channel Logout

notifications. This lets the OpenID Connect Provider notify Synapse when a user logs out, so that
Synapse can end that user session.
Client Auth Method : auth method to use when exchanging the token. Set it to Client Secret 
Basic  or any method supported by your Idp
Client ID : the Client ID  you saved before
Discover : enable/disable the use of the OIDC discovery mechanism to discover endpoints
Idp Brand : an optional brand for this identity provider, allowing clients to style the login flow according

to the identity provider in question
Idp ID : a string identifying your identity provider in your configuration
Idp Name : A user-facing name for this identity provider, which is used to offer the user a choice of

login mechanisms in the Element UI. In the screenshot bellow, Idp Name  is set to Azure AD

Issuer : the OIDC issuer. Used to validate tokens and (if discovery is enabled) to discover the
provider's endpoints https://<your-adfs.domain.com>/adfs/
Token Endpoint : the oauth2 authorization endpoint. Required if provider discovery is disabled.
Client Secret : your client secret you saved before.

Scopes: add every scope on a different line
The openid scope is required which translates to the Sign you in permission in the consent UI
You might also include other scopes in this request for requesting consent.

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-04-at-10-45-23.png


User Mapping Provider: Configuration for how attributes returned from a OIDC provider are mapped
onto a matrix user.

Localpart Template : Jinja2 template for the localpart of the MXID. Set it to {{ 
user.upn.split('@')[0] }}  for AD FS

Other configurations are documented here.

https://ems-docs.element.io/uploads/images/gallery/2023-05/screenshot-2023-05-03-at-17-27-00.png
https://matrix-org.github.io/synapse/v1.41/openid.html

