
Introduction to Element Enterprise
Kubernetes Installations
Single Node Installations
Using the Single Node Installer in an Air-Gapped Environment
Setting Up Jitsi and TURN With the Installer
Setting up Permalinks With the Installer
Setting up Delegated Authentication With the Installer
Setting up Group Sync with the Installer
Setting Up the Integration Manager With the Installer
Setting up GitLab, GitHub, and JIRA Integrations With the Installer
Setting up Adminbot and Auditbot
Configuring the Enterprise Admin Dashboard
Setting Up Chatterbox
Setting up On-Premise Metrics
Troubleshooting
Archived Documentation Repository

Documentation covering v1 and installers prior to 2022-07.03

Single Node Installs: Storage and Backup Guidelines
On-Premise Support Scope of Coverage

Element On-
Premise
Documentation

Element Enterprise provides an enterprise-grade secure communications platform that can be run
either on your own premise or in our Element Cloud. Element Enterprise includes all of the security
and privacy features that you get with Element:

Built on the Matrix open communications standard.
Provides end to end encrypted messaging, voice, and video through a consumer style
messenger with the power of a collaboration tool.
Delivers data sovereignty.
Affords a high degree of flexibility that can be tailored to many use cases.
Allows secure federation within a single organisation or across a supply chain or
ecosystem.

and combines them with the following unique Enterprise specific features:

Group Sync: Synchronize group data from your identity provider and map these into
Element spaces.
Adminbot: Give your server administrator the ability to be admin in any rooms on your
homeserver.
Auditbot: Have an auditable record of conversations conducted on your homeserver.
Chatterbox: Give your website a light-weight Matrix client for customers to chat with your
company.
Security and feature updates: Updates are easy to deploy and handled by our installer.
Support: Access to the experts in federated, secure communications giving you
confidence to deploy our platform for your most critical secure communications needs.

Given the flexibility afforded by this platform, ours has a number of moving parts to configure. This
documentation will step you through architecting and deploying Element Enterprise On-Premise.

Introduction to Element
Enterprise
What is Element Enterprise?

Element Enterprise On-Premise can be deployed both to a single node or a set of multiple nodes.
In the case of the multiple node deployment, this requires kubernetes, a container orchestration
platform. In the case of our single node deployment, our installer deploys microk8s (a smaller
distribution of kubernetes) and deploys our application to that microk8s instance.

In general, regardless of if you pick a single node deployment or a multiple node deployment, you
will need a base level of hardware to support the application.

For scenarios that utilise closed federation, Element recommends a minimum of 4 vcpus/cpus and
16GB ram for the host(s) running synapse pods.

For scenarios that utilise open federation, Element recommends a minimum of 8 vcpus/cpus and
32GB ram for the host(s) running synapse pods.

This document gives an overview of our secure communications platform architecture:

(Please click on the image to view it at 100%.)

Comprising our secure communications platform are the following components:

synapse : The homeserver itself.
element-web : The Element Web client.
dimension: Our integration manager.
synapse admin ui : Our Element Enterprise Administrator Dashboard.
postgresql (Optional) : Our database. Only optional if you already have a separate
PostgreSQL database.
groupsync (Optional) : Our group sync software
adminbot (Optional) : Our bot for admin tasks.
auditbot (Optional) : Our bot that provides auditability.
hookshot (Optional) : Our integrations with gitlab, github, jira, and custom webhooks.
chatterbox (Optional) : Light weight client for your website.
jitsi (Optional) : Our VoIP platform for group conferencing.
coturn (Optional) : TURN server. Required if deploying VoIP.

Deploying to a Single Node
or Multiple Nodes?

Architecture

https://ems-docs.element.io/uploads/images/gallery/2022-07/matrix-architecture-generic-kubernetes-deployment.png

prometheus (Optional) : Provides metrics about the application and platform.
grafana (Optional) : Graphs metrics to make them consumable.

For each of the components in this list (excluding postgresql, groupsync, adminbot, auditbot, and
prometheus), you must provide a hostname on your network that meets this criteria:

Fully resolvable to an IP address that is accessible from your clients.
Signed PEM encoded certificates for the hostname in a crt/key pair. Certificates should be
signed by an internet recognised authority, an internal to your company authority, or
LetsEncrypt.

It is possible to deploy Element Enterprise On-Premise with self-signed certificates and without
proper DNS in place, but this is not ideal as the mobile clients and federation do not work with self-
signed certificates. Information on how to use self-signed certificates and hostname mappings
instead of DNS can be found in How to Setup Local Host Resolution Without DNS

In addition to hostnames for the above, you will also need a hostname and PEM encoded
certificate key/cert pair for your base domain. If we were deploying a domain called example.com
and wanted to deploy all of the software, we would have the following hostnames in our
environment that needed to meet the above criteria:

example.com (base domain)
synapse.example.com (homeserver)
element.example.com (element web)
dimension.example.com (integration manager)
admin.example.com (admin dashboard)
hookshot.example.com (Our integrations)
chatterbox.example.com (Our light weight client)
jitsi.example.com (Our VoIP platform)
coturn.example.com (Our TURN server)
grafana.example.com (Our Grafana server)

As mentioned above, this list excludes postgresql, groupsync, adminbot, auditbot, and prometheus.

Further, if you want to do voice or video, you will need a TURN server. If you already have one, you
do not have to set up coturn. If you do not already have a TURN server, you will want to set up
coturn and if your server is behind NAT, you will need to have an external IP in order for coturn to
work.

Installation

https://ems-docs.element.io/books/ems-knowledge-base/page/how-to-setup-local-host-resolution-without-dns

For a multiple node installation, make sure you have a kubernetes platform deployed that you
have access to and head over to Kubernetes Installations

For a single node installation, please note that we support these on the following platforms:

Ubuntu Server 20.04
Enterprise Linux 8 (RHEL, CentOS Stream, etc.)

Once you have a server with one of these installed, please head over to Single Node Installations

Multiple Nodes

Single Node

https://ems-docs.element.io/books/element-enterprise-on-premise-documentation/page/kubernetes-installations
https://ems-docs.element.io/books/element-enterprise-on-premise-documentation/page/single-node-installations

Our Element Enterprise Kubernetes Installer can handle the installation of Element Enterprise into
your production kubernetes (k8s) environment.

To get started with a kubernetes installation, there are several things that need to be considered
and this guide will work through them:

k8s Environments
Postgresql Database
TURN Server
SSL Certificates
Extra configuation items

Once these areas have been covered, you'll be able to install a production environment!

Please make sure that you unpack element-enterprise-installer onto a system that has access to
your k8s environment. The directory that it unpacks into will be referenced in this document as the
installer directory.

You will also need to create a directory for holding the configurations for the installer. This will be
referenced as the config directory going forward.

Element Enterprise Installer allows you to either deploy directly into a kubernetes environment or
to render a set of manifests for a future deployment in a kubernetes environment.

To configure your kubernetes environment for a direct deployment, you need to :

Configure a kubectl context able to connect to your kubernetes instance
Copy k8s.yml.sample to k8s.yml in your config directory. Edit k8s.yml with the following
values :
provider_storage_class_name : The storage class to use when creating PVCs.

Kubernetes Installations

Unpacking the Installer

mkdir ~/.element-onpremise-config

k8s Environments

https://kubernetes.io/docs/concepts/storage/storage-classes/

ingress_annotations : The annotations to add to the ingresses created by the operator.
tls_managed_externally : Should be true if you don't expect the operator to manage the

certificates of your kubernetes deployment. In this case, you will be able to skip the *
Certificates- chapter of the CONFIGURE.md file.
operator_namespace : The namespace to create to deploy the operator.
element_namespace : The namespace to create to deploy the element resources.
k8s_auth_context : The value of the context used in kubectl. If you want to use cert-

manager for your tls certificates, it needs to be already installed in the targeted k8s
cluster.

An example k8s.yml file would look like:

If you do not want to deploy directly to kubernetes, but wish to render manifests instead, set all of
the above mentioned variables except for k8s_auth_context and define a value for the parameter
out_dir , which specifies where to write the kubernetes manifests. Further, when you go to run the

installer, you need to invoke it as such:

provider_storage_class_name: gp8-delete # select an available storage class

ingress_annotations: ## below are expected annotations for an aws deployment

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/group.name: global

 alb.ingress.kubernetes.io/target-type: ip

 alb.ingress.kubernetes.io/ip-address-type: ipv4

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80},{"HTTPS": 443}]'

synapse_ingress_annotations: # below are required annotations if using the NGINX ingress

controller

 nginx.ingress.kubernetes.io/proxy-body-size: "50m"

tls_managed_externally: true # true if the certificates are managed externaly to k8s

security_context_force_uid_gid: true # true to enable pod runAsUser and fsGroup in security

context. false if it should not be used, in the case of openshift for example.

security_context_set_seccomp: true # true to enable RuntimeDefault pod seccomp. false if it

should not be used, in the case of openshift for example.

operator_namespace: <namespace to create to deploy the operator>

element_namespace: <namespace to create to deploy the element resources>

k8s_auth_context: <the k8s auth context>

out_dir: # Absolute path to the directory where to render manifests, if render mode is used

operator_manager_limits: # Can be used to defined upper limits if the default one are not

large enough for your operator deployment

cpu: "2"

memory: 8Gi

https://cert-manager.io/docs/configuration/acme/
https://cert-manager.io/docs/configuration/acme/

Using the above syntax, you will have a set of manifests written out to out_dir that you can then
deploy into your kubernetes environment.

N.B. You will need to set your ingress controller's upload size to be at least 50 Mb to match
synapse's default upload size if you wish to be able to have users upload files up to 50 Mb in size.
Instructions for doing this with nginx are included in the parameters.yml section below.

The installation requires that you have a postgresql database with a locale of C and UTF8 encoding
set up. See https://matrix-org.github.io/synapse/latest/postgres.html#set-up-database for further
details.

Please make note of the database hostname, database name, user, and password as you will need
these to begin the installation.

For installations in which you desire to use video conferencing functionality, you will need to have
a TURN server installed and available for Element to use.

If you do not have an existing TURN server, our installer can configure one for you by following the
extra steps in Setting Up Jitsi and TURN With the Installer.

If you have an existing TURN server, please create a file called synapse/turn.yml in your config
directory and put the following in it:

based on your TURN server specifics. This will allow the installer to configure synapse to use your
TURN server.

A few notes on TURN servers:

bash install.sh ~/.element-onpremise-config --target render

Postgresql Database

TURN Server

turn_uris: ["turn:turn.matrix.org?transport=udp", "turn:turn.matrix.org?transport=tcp"]

turn_shared_secret: "n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons"

turn_user_lifetime: 86400000

turn_allow_guests: True

https://matrix-org.github.io/synapse/latest/postgres.html#set-up-database
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer

The TURN server has to be directly accessible by end-users. Normally this means a public
IP, however if all the end-users are going to be on a VPN/private network then they just
need to be able to access the private IP of the TURN server.
The only reason to have TURN on a private network is if the private network disallows
user <-> user traffic and only allows user <-> TURN server traffic. If user <-> user is
allowed within the private network then a TURN server isn't needed.

For SSL Certificates, you have three options:

Signed PEM encoded certificates from an internet recognized authority.
Signed PEM encoded certificates from an internal to your company authority.
LetsEncrypt

In the case of LetsEncrypt, your hostnames must be accessible on the internet.

You will need to configure certificates for the following names:

fqdn.tld
element.fqdn.tld
synapse.fqdn.tld
dimension.fqdn.tld
hookshot.fqdn.tld

Using our example hosts, this would mean that we need certificates for:

local
element.local
synapse.local
dimension.local
hookshot.local

If you have certificates for all of the aforementioned host names, then you can simply place the
.crt and .key files in the certs directory under the config directory. Certificates in the certs

directory must take the form of fqdn.cert and fqdn.key .

SSL Certificates

Certificates without LetsEncrypt

Certificates with LetsEncrypt

Our installer also supports using LetsEncrypt to build certificates for your host names and
automatically install them into your environment. If your hosts are internet accessible, this is the
easiest method and only requires an admin email address to provide to LetsEncrypt.

Now it is time to set parameters.yml . A sample has been provided and to get started, it is easiest
to do:

Using the example hostnames of element.local and synapse.local (not resolvable on the
internet), we would set the following parameters first in parameters.yml :

Next, we need to set the variables related to Postgres. As you are installing into kubernetes, you
will need to set the following for your Postgres database:

The next line states:

You wll want to adjust that to match the size of storage you've allocated for your media. It must be
at least 50Gb.

The next section pertains to certmanager. If you are using your own certificates, please leave
these items both blank, as such:

If you have chosen to use letsencrypt, please specify “letsencrypt” for the certmanager_issue and
an actual email address for who should manage the certificates for certmanager_admin_email:

parameters.yml

cp config-sample/parameters.yml.sample ~/.element-onpremise-config/parameters.yml

domain_name: local

element_fqdn: element.local

synapse_fqdn: synapse.local

postgres_create_in_cluster: false

postgres_fqdn: `Postgres Server`

postgres_user: `Postgres User`

postgres_db: `Postgres Database for Element`

media_size: "50Gi"

certmanager_issuer:

certmanager_admin_email:

Starting with installer 2022-08.02, we have added two mandatory variables related to telemetry
data. These are max_mau_users and strict_mau_users_limit . You should set max_mau_users to the
value defined in your contract with Element. If you set this number above your contractual limit,
then the software will allow you to exceed your contractual limit and Element will bill you
appropriately for the overage.

Setting strict_mau_users_limit to true forces synapse to cap the number of monthly active users
to the value defined in max_mau_users . Say for example, you've paid Element for 1,000 monthly
active users and don't want to exceed that, you would set:

Let's say that you paid Element for 1,000 monthly active users, but didn't mind going over
provided that you didn't exceed 2,000 monthly active users. In this scenario, you would set:

You will also see two paths:

For all installations, media_host_data_path should be uncommented.

You will also notice two lines towards the end regarding synapse_registration and
tls_managed_externally . In most cases, you can leave these alone, but if you wish to close synapse

registration or have your TLS managed externally, you may set them at this time.

If you are using nginx as your ingress controller and wish to send files up to 50 Mb in size, please
add these two lines to parameters.yml:

certmanager_issuer: 'letsencrypt'

certmanager_admin_email: 'admin@mydomain.com'

max_mau_users: 1000

strict_mau_users_limit: true

max_mau_users: 2000

strict_mau_users_limit: true

media_host_data_path: "/mnt/data/synapse-media"

postgres_data_path: "/mnt/data/synapse-postgres"

synapse_ingress_annotations:

 nginx.ingress.kubernetes.io/proxy-body-size: "50m"

secrets.yml

Now we move on to configuring secrets.yml . You will need the following items here:

A Macaroon key
Your postgres password for the user specified in parameters.yml
A Registration Shared Secret
A signing Key
An EMS Image Store username and token, which will have been provided to you by
Element.

To build a secrets.yml with the macaroon key, the registration shared secret, the generic shared
secret, and the signing key already filled in, please run:

You will need to uncomment and set your postgres_password field to the proper password for your
database.

Do not forget to also set the values for ems_image_store_username and ems_image_store_token ,
which will both be provided by Element.

If you have a paid docker hub account, you can specify your username and password to avoid
being throttled in the dockerhub_username and dockerhub_token fields. This is optional.

It is possible to configure anything in Synapse's homeserver.yaml or Element’s config.json.

To do so, you need to create json or yaml files in the appropriate directory under the config
directory. These files will be merged to the target configuration file.

Samples are available in config-sample under the installer directory.

To configure synapse:

Create a directory synapse at the root of the config directory : mkdir ~/.element-
onpremise-config/synapse

Copy the configurations extensions you want to setup from config-sample/synapse to
~/.element-onpremise-config/synapse .
Edit the values in the file accordingly to your configuration

To configure element:

sh build_secrets.sh

mv secrets.yml ~/.element-onpremise-config/

Extra Configuration Items

https://github.com/matrix-org/synapse/blob/develop/docs/sample_config.yaml
https://github.com/vector-im/element-web/blob/develop/docs/config.md

Create a directory element at the root of the config directory : mkdir ~/.element-
onpremise-config/element

Copy the configurations extensions you want to setup from config-sample/element to
~/.element-onpremise-config/element .
Edit the values in the file accordingly to your configuration

For specifics on configuring permalinks for Element, please see Setting up Permalinks.

For specifics on setting up Delegated Authentication, please see Setting up Delegated
Authentication With the Installer

For specifics on setting up Group Sync, please see Setting up Group Sync

For specifics on setting up the Integration Manager, please see Setting Up the Integration Manager
With the Installer

For specifics on setting up GitLab, GitHub, and JIRA integrations, please see Setting up GitLab,
GitHub, and JIRA Integrations With the Installer

For specifics on setting up Chatterbox, please see: Setting Up Chatterbox

For specifics on setting up Adminbot and Auditbot, please see: Setting up Adminbot and Auditbot

For specifics on setting up the Enterprise Admin Dashboard, please see: Configuring the Enterprise
Admin Dashboard

For specifics on pointing your installation at an existing Jitsi instance, please see Setting Up Jitsi
and TURN With the Installer

Let’s review! Have you considered:

k8s Environments
Postgresql Database
TURN Server
SSL Certificates
Extra configuration items

Installation

https://ems-docs.element.io/setting-up-permalinks
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-group-sync
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-chatterbox
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-adminbot-and-auditbot
https://ems-docs.element.io/books/element-on-premise-documentation/page/configuring-the-enterprise-admin-dashboard
https://ems-docs.element.io/books/element-on-premise-documentation/page/configuring-the-enterprise-admin-dashboard
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer

Once you have the above sections taken care of and your parameters.yml and secrets.yml files
are in order, you are ready to begin the actual installation.

From the installer directory, run:

The first run should go for a little while and then exit, instructing you to log out and back in.

Please log out and back in and re-run the installer from the installer directory again:

bash install.sh ~/.element-onpremise-config

bash install.sh ~/.element-onpremise-config

Our Element Enterprise Single Node Installer can handle the installation of environments in which
only one server is available. Our single node environment consists of a single server with microk8s
running that we deploy our Element Enterprise Operator to, resulting in a fully functioning Synapse
server with Element Web.

To get started with a single node installation, there are several things that need to be considered
and this guide will work through them:

Operating System
Postgresql Database
TURN Server
SSL Certificates
Extra configuration items

Once these areas have been covered, you’ll be able to install a single node environment!

To get started, we have tested on Ubuntu 20.04 and Red Hat Enterprise Linux 8.5 and suggest that
you start there as well. For x86_64, you can grab an Ubuntu iso here:

https://releases.ubuntu.com/20.04.3/ubuntu-20.04.3-live-server-amd64.iso

or you can get Red Hat Enterprise Linux 8 with a Developer Subscription

https://developers.redhat.com/content-gateway/file/rhel-8.6-x86_64-dvd.iso

Note that future references in this document to EL reference Enterprise Linux.

Make sure to select docker as a package option. Do set up ssh.

Single Node Installations
Overview

Operating System

Ubuntu Specific Directions

https://releases.ubuntu.com/20.04.3/ubuntu-20.04.3-live-server-amd64.iso
https://developers.redhat.com/products/rhel/download
https://developers.redhat.com/content-gateway/file/rhel-8.6-x86_64-dvd.iso

Once you log in, please run:

The installer requires that you run it as a non-root user who has sudo permissions. Please make
sure that you have a user who can use sudo . If you wanted to make a user called element-demo
that can use sudo , the following commands (run as root) would achieve that:

Make sure to select "Container Management" in the "Additional Software" section.

Once you log in, please run:

Add the following lines to /etc/security/limits.conf :

Then, run:

The installer requires that you run it as a non-root user who has sudo permissions. Please make
sure that you have a user who can use sudo . If you wanted to make a user called element-demo
that can use sudo , the following commands (run as root) would achieve that:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install python3-signedjson pwgen -y

useradd element-demo

gpasswd -a element-demo sudo

EL Specific directions

sudo yum update -y

sudo yum install podman-docker python39-pip -y

sudo yum install

https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm -y

sudo alternatives --set python3 /usr/bin/python3.9

* soft nofile 100000

* hard nofile 100000

sudo yum install make gcc python39-devel pwgen -y

pip3 install signedjson --user

useradd element-demo

gpasswd -a element-demo wheel

You should have the installer unpacked in a directory on your server. We will refer to this as the
installer directory. You will also need to create a configuration directory that we will call the config
directory. Both the parameters.yml and secrets.yml file live in the config directory.

To create the configuration directory, run the following:

Element Enterprise On-Premise needs to bind and serve content over:

Port 80 TCP
Port 443 TCP

microk8s needs to bind and serve content over:

Port 16443 TCP
Port 10250 TCP
Port 10255 TCP
Port 25000 TCP
Port 12379 TCP
Port 10257 TCP
Port 10259 TCP
Port 19001 TCP

For more information, see https://microk8s.io/docs/ports.

In a default Ubuntu installation, these ports are allowed through the firewall. You will need to
ensure that these ports are passed through your firewall.

For EL, you need to explicitly open the above ports and enabling masquerading:

Setting up the Configuration Directory

mkdir ~/.element-onpremise-config

Network Specifics

sudo firewall-cmd --add-service={http,https} --permanent

sudo firewall-cmd --add-port=16443/tcp --add-port=10250/tcp --add-port=10255/tcp --add-

port=25000/tcp --add-port=12379/tcp --add-port=10257/tcp --add-port=10259/tcp --add-

port=19001/tcp --permanent

sudo firewall-cmd --add-masquerade --permanent

sudo firewall-cmd --reload

https://microk8s.io/docs/ports

Further, you need to make sure that your host is able to access the following hosts on the internet:

api.snapcraft.io
*.snapcraftcontent.com
gitlab.matrix.org
gitlab-registry.matrix.org
pypi.org
docker.io
*.docker.com
get.helm.sh

Further, you will also need to make sure that your host can access your distributions' package
repositories. As these hostnames can vary, it is beyond the scope of this documentation to
enumerate them.

We also cover the case where you need to use a proxy to access the internet. Please see this
article for more information: Configuring a microk8s Single Node Instance to Use a Network Proxy

Please make sure that you unpack element-enterprise-installer onto your single node system.
The directory that it unpacks into will be referenced in this document as the installer directory.

The installation requires that you have a postgresql database with a locale of C and UTF8 encoding
set up. See https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-
database for further details.

If you have this already, please make note of the database name, user, and password as you will
need these to begin the installation.

If you do not already have a database, then the single node installer will set up PostgreSQL on
your behalf.

Network Proxies

Unpacking the Installer

Postgresql Database

TURN Server

https://ems-docs.element.io/books/ems-knowledge-base/page/configuring-a-microk8s-single-node-instance-to-use-a-network-proxy
https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-database
https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-database

For installations in which you desire to use video conferencing functionality, you will need to have
a TURN server installed and available for Element to use.

If you do not have an existing TURN server, our installer can configure one for you by following the
extra steps in Setting Up Jitsi and TURN With the Installer

If you have an existing TURN server, please create a file called synapse/turn.yml in your config
directory and put the following in it:

based on your TURN server specifics. This will allow the installer to configure synapse to use your
TURN server.

A few notes on TURN servers:

The TURN server has to be directly accessible by end-users. Normally this means a public
IP, however if all the end-users are going to be on a VPN/private network then they just
need to be able to access the private IP of the TURN server.
The only reason to have TURN on a private network is if the private network disallows
user <-> user traffic and only allows user <-> TURN server traffic. If user <-> user is
allowed within the private network then a TURN server isn't needed.

For SSL Certificates, you have three options:

Signed PEM encoded certificates from an internet recognized authority.
Signed PEM encoded certificates from an internal to your company authority.
LetsEncrypt
Self-signed certificates

In the case of Signed certificates or LetsEncrypt, your hostnames must be accessible on the
internet.

In the case of self-signed certificates, these are acceptable for a PoC (proof of concept)
environment, but will not be supported in a production environment as the security risk would be
too high. Configuring mobile clients and federation will not be possible with self-signed certificates.

You will need to configure certificates for the following names:

turn_uris: ["turn:turn.matrix.org?transport=udp", "turn:turn.matrix.org?transport=tcp"]

turn_shared_secret: "n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons"

turn_user_lifetime: 86400000

turn_allow_guests: True

SSL Certificates

https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer

fqdn.tld
element.fqdn.tld
synapse.fqdn.tld
dimension.fqdn.tld
hookshot.fqdn.tld

Using our example hosts, this would mean that we need certificates for:

local
element.local
synapse.local
dimension.local
hookshot.local

If you have certificates for all of the aforementioned host names, then you can simply place the
PEM encoded .crt and .key files in the certs directory under the installer directory. Certificates
in the certs directory must take the form of fqdn.crt and fqdn.key .

For information on using self-signed certificates with mkcert, please see this article: Using Self-
Signed Certificates with mkcert

Our installer also supports using LetsEncrypt to build certificates for your host names and
automatically install them into your environment. If your hosts are internet accessible, this is the
easiest method and only requires an admin email address to provide to LetsEncrypt.

Now it is time to set parameters.yml . A sample has been provided and to get started, it is easiest
to do:

Certificates without LetsEncrypt

Self-signed certificates with mkcert

Certificates with LetsEncrypt

parameters.yml

cp config-sample/parameters.yml.sample ~/.element-onpremise-config/parameters.yml

https://ems-docs.element.io/books/ems-draft-knowledge-base/page/using-self-signed-certificates-with-mkcert
https://ems-docs.element.io/books/ems-draft-knowledge-base/page/using-self-signed-certificates-with-mkcert

Using the example hostnames of element.local and synapse.local (not resolvable on the
internet), we would set the following parameters first in parameters.yml :

Next, we need to set the variables related to Postgres. If you do not have an existing Postgres
server, do not make any changes. If you have an existing Postgres server, set the following:

The next line states:

You wll want to adjust that to match the size of storage you've allocated for your media. It must be
at least 50Gb.

The next section pertains to certmanager. If you are using your own certificates, please leave
these items both blank, as such:

If you have chosen to use letsencrypt, please specify “letsencrypt” for the certmanager_issue and
an actual email address for who should manage the certificates for certmanager_admin_email:

Starting with installer 2022-08.02, we have added two mandatory variables related to telemetry
data. These are max_mau_users and strict_mau_users_limit . You should set max_mau_users to the
value defined in your contract with Element. If you set this number above your contractual limit,
then the software will allow you to exceed your contractual limit and Element will bill you
appropriately for the overage.

Setting strict_mau_users_limit to true forces synapse to cap the number of monthly active users
to the value defined in max_mau_users . Say for example, you've paid Element for 1,000 monthly
active users and don't want to exceed that, you would set:

domain_name: local

element_fqdn: element.local

synapse_fqdn: synapse.local

postgres_create_in_cluster: false

postgres_fqdn: `Postgres Server`

postgres_user: `Postgres User`

postgres_db: `Postgres Database for Element`

media_size: "50Gi"

certmanager_issuer:

certmanager_admin_email:

certmanager_issuer: 'letsencrypt'

certmanager_admin_email: 'admin@mydomain.com'

Let's say that you paid Element for 1,000 monthly active users, but didn't mind going over
provided that you didn't exceed 2,000 monthly active users. In this scenario, you would set:

You will also see two paths:

For all installations, media_host_data_path should be uncommented. For installations in which you
are letting the installer install postgresql for you, please uncomment the postgres_data_path line.

The next lines concern images_dir and local_registry . These are only needed in an air-gapped
environment. If you are installing into an air-gapped environment, please see: Using the Single
Node Installer in an Air-Gapped Environment

The next item in the configuration is the microk8s DNS resolvers. By default, the installer will use
Google's publicly available DNS servers. If you have defined your hosts on a non-publicly available
DNS server, then you should use your DNS servers instead of the publicly available Google DNS
servers. Let's assume that your local dns servers are 192.168.122.253 and 192.168.122.252. To
use those servers, you would need to add this line:

You will also notice two lines towards the end regarding synapse_registration and
tls_managed_externally . In most cases, you can leave these alone, but if you wish to close synapse

registration or have your TLS managed externally, you may set them at this time.

Further, if you are not using DNS for hostname mapping, you will need to configure the
host_aliases parameter in this file and that is documented in How to Setup Local Host Resolution

Without DNS.

Now we move on to configuring secrets.yml . You will need the following items here:

max_mau_users: 1000

strict_mau_users_limit: true

max_mau_users: 2000

strict_mau_users_limit: true

media_host_data_path: "/mnt/data/synapse-media"

postgres_data_path: "/mnt/data/synapse-postgres"

microk8s_dns_resolvers: "192.168.122.253,192.168.122.252"

secrets.yml

https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-single-node-installer-in-an-air-gapped-environment
https://ems-docs.element.io/books/element-on-premise-documentation/page/using-the-single-node-installer-in-an-air-gapped-environment
https://ems-docs.element.io/books/ems-knowledge-base/page/how-to-setup-local-host-resolution-without-dns
https://ems-docs.element.io/books/ems-knowledge-base/page/how-to-setup-local-host-resolution-without-dns

A Macaroon key
Your postgres password for the user specified in parameters.yml
A Registration Shared Secret
A signing Key
An EMS Image Store username and token, which will have been provided to you by
Element.

To build a secrets.yml with the macaroon key, the registration shared secret, the generic shared
secret, and the signing key already filled in, please run:

If you are using your own Postgres server, you will need to uncomment and fill in the
postgres_passwd . If you are letting the installer install Postgres for you, then you will need to set a

random password. You can generate a random password with:

and then insert that value in the postgres_passwd field, making sure that you uncomment the line.

Do not forget to also set the values for ems_image_store_username and ems_image_store_token ,
which will both be provided by Element.

If you have a paid docker hub account, you can specify your username and password to avoid
being throttled in the dockerhub_username and dockerhub_token fields. This is optional.

It is possible to configure anything in Synapse's homeserver.yaml or Element’s config.json.

To do so, you need to create json or yaml files in the appropriate directory under the config
directory. These files will be merged to the target configuration file.

Samples are available in config-sample under the installer directory.

To configure synapse:

Create a directory synapse at the root of the config directory : mkdir ~/.element-
onpremise-config/synapse

Copy the configurations extensions you want to setup from config-sample/synapse to
~/.element-onpremise-config/synapse .
Edit the values in the file accordingly to your configuration

sh build_secrets.sh

mv secrets.yml ~/.element-onpremise-config/

pwgen 32 1

Extra Configuration Items

https://github.com/matrix-org/synapse/blob/develop/docs/sample_config.yaml
https://github.com/vector-im/element-web/blob/develop/docs/config.md

To configure element:

Create a directory element at the root of the installer directory : mkdir ~/.element-
onpremise-config/element

Copy the configurations extensions you want to setup from config-sample/element to
~/.element-onpremise-config/element .
Edit the values in the file accordingly to your configuration

For specifics on configuring permalinks for Element, please see Setting up Permalinks With the
Installer

For specifics on setting up Delegated Authentication, please see Setting up Delegated
Authentication With the Installer

For specifics on setting up Group Sync, please see Setting up Group Sync with the Installer

For specifics on setting up the Integration Manager, please see Setting Up the Integration Manager
With the Installer

For specifics on setting up GitLab, GitHub, and JIRA integrations, please see Setting up GitLab,
GitHub, and JIRA Integrations With the Installer

For specifics on setting up Chatterbox, please see: Setting Up Chatterbox

For specifics on setting up Adminbot and Auditbot, please see: Setting up Adminbot and Auditbot

For specifics on setting up the Enterprise Admin Dashboard, please see: Configuring the Enterprise
Admin Dashboard

For specifics on pointing your installation at an existing Jitsi instance, please see Setting Up Jitsi
and TURN With the Installer

Let’s review! Have you considered:

Operating System
Postgresql Database
TURN Server
SSL Certificates

Installation

https://ems-docs.element.io/setting-up-permalinks-with-the-installer
https://ems-docs.element.io/setting-up-permalinks-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-group-sync-with-the-installer
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-chatterbox
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-adminbot-and-auditbot
https://ems-docs.element.io/books/element-on-premise-documentation/page/configuring-the-enterprise-admin-dashboard
https://ems-docs.element.io/books/element-on-premise-documentation/page/configuring-the-enterprise-admin-dashboard
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer
https://ems-docs.element.io/books/element-on-premise-documentation/page/setting-up-jitsi-and-turn-with-the-installer

Extra configuration items

Once you have the above sections taken care of and your parameters.yml and secrets.yml files
are in order, you are ready to begin the actual installation.

From the installer directory, run: (Note: You can replace ~/.element-onpremise-config with
whatever you have specified for your config directory.)

The first run should go for a little while and then exit, instructing you to log out and back in.

Please log out and back in and re-run the installer from the installer directory again:

Once this has finished, you can run:

And you should get similar output to:

At this time, you should also be able to browse to: https://fqdn and create a test account with
Element on your new homeserver. Using our example values, I am able to go to
https://element.local/ and register an account, sign in and begin testing!

bash install.sh ~/.element-onpremise-config

bash install.sh ~/.element-onpremise-config

kubectl get pods -n element-onprem

NAME READY STATUS RESTARTS AGE

app-element-web-c5bd87777-rqr6s 1/1 Running 1 29m

server-well-known-8c6bd8447-wddtm 1/1 Running 1 29m

postgres-0 1/1 Running 1 40m

instance-synapse-main-0 1/1 Running 2 29m

instance-synapse-haproxy-5b4b55fc9c-hnlmp 1/1 Running 0 20m

An air-gapped environment is any environment in which the running hosts will not have access to
the greater internet. This proposes a situation in which these hosts are unable to get access to
various needed bits of software from Element and also are unable to share telemetry data back
with Element.

For some of these environments, they can be connected to the internet from time to time and
updated during those connection periods. In other environments, the hosts are never connected to
the internet and everything must be moved over sneaker net.

This guide will cover running the microk8s installer when only sneaker net is available as that is
the most restrictive of these environments.

You will need our airgapped dependencies .tar.gz file which you can get from Element:

element-enterprise-installer-airgapped-<version>.tar.gz

Using the Single Node
Installer in an Air-Gapped
Environment
Defining Air-Gapped Environments

Preparing the media to sneaker
net into the air gapped
environment

Extract the airgapped dependencies to the airgapped directory at the root of the installer folder.
You obtain the following directories :

airgapped/pip
airgapped/galaxy
airgapped/snaps
airgapped/containerd
airgapped/images

Your airgapped machine will still require access to airgapped linux repositories depending on your
OS.

Add the following parameters in your parameters.yml :

local_registry: localhost:32000
images_dir: <absolute path to the airgapped/images directory>

The installer will upload the images automatically to your local registry, and use these references
to start the workloads.

When running the install script, add the parameter --airgapped so that it installs its pip and
galaxy dependencies from the airgapped folder.

Running the installer in the air
gapped environment

You will have to open the following ports to your microk8s host to enable coturn and jitsi :

For jitsi :

30301/tcp
30300/udp

For coturn, allow the following ports :

3478/tcp
3478/udp
5349/tcp
5349/udp

You will also have to allow the following port range, depending on the settings you define in
coturn.yml (see below) :

<coturn min port>-<coturn max port>/udp

The jitsi and coturn domain names must resolve to the VM access IP. You must not use
host_aliases for these hosts to resolve to the private IP locally on your setup.

Setting Up Jitsi and TURN
With the Installer
Configure the Installer to install
Jitsi and TURN
Prerequisites
Firewall

DNS

Copy sample file from config-sample/coturn/coturn.yml to the coturn sub-directory
within your config folder
Edit the file and add the following values :

coturn_fqdn : The access address to coturn. It should match something like
coturn.<fqdn.tld> . It must resolves to the public-facing IP of the VM.
shared_secret : A random value, you can generate it with pwgen 32
min_port : The minimal UDP Port used by coturn for relaying UDP Packets, in range

32769-65535
max_port : The maximum UDP Port used by coturn for relaying UDP Packets, in

range 32769-65535

Copy sample file from config-sample/jitsi/jitsi.yml to the jitsi sub-directory within
your config folder
Edit the file and add the following values :

jitsi_fqdn : The access address to jitsi. It should match something like
jitsi.<fqdn.tld> . It must resolves to the public-facing IP of the VM.
jicofo_auth_password : # a secret internal password for jicofo auth
jicofo_component_secret : # a secret internal password for jicofo component
jvb_auth_password : # a secret internal password for jvb
helm_override_values : {} # if needed, to override helm settings automatically set

by the installer
timezone : Europe/Paris # The timezone in TZ format

Copy sample file from config-sample/element/jitsi.json to the element sub-directory
within your config folder
Edit the file and replace <jitsi_fqdn> by the value of jitsi fqdn.

Restart the install script once everyting is set.

Coturn

Jitsi

Element

Configure the installer to use an
existing Jitsi instance

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Create a file called jitsi.json in the ~/.element-onpremise-config/element directory.
Edit the file :

replacing your.jitsi.example.org with the hostname of your Jitsi server.

Restart the install script

{

 "jitsi": {

 "preferredDomain": "your.jitsi.example.org"

 }

}

Copy sample file from config-sample/element/permalinks.json in the installer directory to
 ~/.element-onpremise-config/element

Edit the file :

Restart the install script

Setting up Permalinks With
the Installer
Element Extra Configurations

{

 "permalinkPrefix": "https://<element fqdn>"

}

Depending on your provider, copy the sample file in the installer root directory from
config-sample/synapse/ to ~/.element-onpremise-config/synapse

Edit the file for the provider you are setting up. You have at least 3 parameters to edit :
The IdP metadata url
The name and description of your synapse server, which your provider would
display to inform the users to which app they are logging in

Disable the local synapse user database and password workflows by creating a file
~/.element-onpremise-config/synapse/disable-local.yml and putting the following in it:

password_config:

 localdb_enabled: false

 enabled: false

Disable local user workflows in element by creating a file ~/.element-onpremise-
config/element/delegatedauth.json and putting the following in it:

{

 "setting_defaults": {

 "UIFeature.identityServer": false,

 "UIFeature.passwordReset": false,

 "UIFeature.registration": false,

 "UIFeature.deactivate": false,

 "UIFeature.thirdPartyId": false

 }

Setting up Delegated
Authentication With the
Installer
On Element Enterprise

cp -r config-sample/synapse ~/.element-onpremise-config/synapse

}

Run the installer to configure SAML provisioning

Here we cover Azure ADFS and Keycloak.

Other SAML providers can be configured for use with Element Enterprise. Please contact Element
for further information in the event that you are not using one of the above providers.

With an account with enough rights, go to : Enterprise Applications Portal
Click on New Application
Click on Create your own application on the top left corner
Choose a name for it, and select Integrate any other application you don't find in the
gallery

Click on "Create"
Select Set up single sign on
Select SAML
Edit on Basic SAML Configuration

In Identifier , add the following URL : https://<synapse
fqdn>/_synapse/client/saml2/metadata.xml

Remove the default URL
In Reply URL , add the following URL : https://<synapse
fqdn>/_synapse/client/saml2/authn_response

Click on Save
Edit on Attributes & Claims

Remove all defaults additional claims
Click on Add new claim to add the following claims. The UID will be used as the MXID, the
value here is mostly a suggestion :

Name: uid , Transformation : ExtractMailPrefix , Parameter 1 :
user.userprincipalname

Name: email , Source attribute : user.mail
Name: displayName , Source attribute : user.displayname

Click on Save
In Users and Groups , add groups and users which may have access to element

On the provider

Azure ADFS

Keycloak

https://portal.azure.com/#blade/Microsoft_AAD_IAM/StartboardApplicationsMenuBlade/AllApps/menuId/

In Configure > Clients , add a new client. Enter https://<synapse
fqdn>/_synapse/client/saml2/metadata.xml as its Client ID
In Mappers , add the 3 following mappers :

Name: uid : User attribute : username
Name: email , User attribute : email
Name: displayName , Javascript mapper : user.FirstName + " " + user.lastName

Group Sync allows you to use the ACLs from your identity infrastructure in order to set up
permissions on Spaces and Rooms in the Element Ecosystem. Please note that the initial version
we are providing only supports a single node, non-federated configuration.

Create ~/.element-onpremise-config/groupsync
Copy sample file from config-sample/groupsync/gsync.yml in the installer directory to
~/.element-onpremise-config/groupsync

Edit the file with the following values :
group_power_levels : A list of groups that'll determine people's Matrix power levels.

This affects only the space that the Group belongs to – doesn't leak up or down. For
MSGraph source, groups should be identified by their ids. On LDAP, they should be
identified by their names.
provisioner.dn_default_prefix : Display names starting with this prefix will get

corrected according to the names we found for their users in LDAP. Optional. Useful
if you're using an OIDC provider that doesn't give you users' display names.
provisioner.default_rooms : Optional. A list of rooms that'll get automatically

created in in managed space. The ID is required to enable Group Sync to track
whether they were already created or not. You can change it, but it'll cause new
rooms to be generated.
provisioner.whitelisted_users : Optional. A list of userid patterns that will not get

kicked from rooms even if they don't belong to them according to LDAP. This is
useful for things like the auditbot. Patterns listed here will be wrapped in ^ and $
before matching.

Setting up Group Sync with
the Installer
What is Group Sync?

General settings

mkdir ~/.element-onpremise-config/groupsync

cp config-sample/groupsync/gsync.yml ~/.element-onpremise-config/groupsync/

verify_tls : Optional. If doing a POC with self-signed certs, set this to 0. The
default value is 1.

You should create a ldap account with read access to the OUs containing the users
This account should use password authentication
To use LDAP source, copy the file config-sample/groupsync/ldap.yml in the installer
directory to ~/.element-onpremise-config/groupsync

edit the following variables :

ldap_check_interval_seconds : The interval check in seconds
ldap_uri : The LDAP Uri to connect to the ldap server
ldap_base : The LDAP base used to build the space hierarchy. This OU will become the

root space. Every OU below this base will be a child-space.
ldap_bind_dn : The user bind dn to use to read the space hierarchy.
ldap_bind_password : The user password
ldap_attrs_uid : The attribute to use to map to users mxids
ldap_attrs_name : The attribute to use to map to spaces names

Restart the install script

You need to create an App registration . You'll need the Tenant ID of the organization,
the Application (client ID) and a secret generated from Certificates & secrets on the
app.
For the bridge to be able to operate correctly, navigate to API permissions and ensure it
has access to Group.Read.All, GroupMember.Read.All and User.Read.All. Ensure that
these are Application permissions (rather than Delegated).
Remember to grant the admin consent for those.
To use MSGraph source, copy the file config-sample/groupsync/msgraph.yml in the installer
directory to ~/.element-onpremise-config/groupsync and edit the following variables :

msgraph_tenant_id : This is the "Tenant ID" from your Azure Active Directory
Overview

Configuring the source
LDAP Servers

cp config-sample/groupsync/ldap.yml ~/.element-onpremise-config/groupsync/

MS Graph (Azure AD)

msgraph_client_id : Register your app in "App registrations". This will be its
"Application (client) ID"
msgraph_client_secret : Go to "Certificates & secrets", and click on "New client

secret". This will be the "Value" of the created secret (not the "Secret ID").
Restart the install script

The space mapping mechanism allows us to configure additional spaces that Group Sync will
maintain, beyond the ones that it creates by default. It is optional – the configuration can be
skipped if no additional spaces are to be created.

This is especially useful when used with bridges other than LDAP, which would normally not create
any spaces other than the company-wide one. When used with the LDAP backend, the spaces
created from LDAP OrgUnits will be added to the list of subspaces of the toplevel space.

Space mapping also replaces the group power level configuration and group filtering, being a
superset of their functionality. It is recommended to use space mapping in their stead, as they
might eventually be deprecated and removed.

If you're using Group Sync already and want to transition to space mapping, make sure to match
the root space ID with the one that Group Sync has already created by default -- otherwise it will
create a brand new space and forget about the old one.

For LDAP, the default ID is the DN (distinguished name) of your main OrgUnit.

For MS Graph, the ID should be your tenant ID.

For SCIM, use scim:<client-id> , where the client-id is what you have defined in client.id in your
configuration.

You can verify what the ID of the existing space is by running Group Sync in dry-run mode (-n1

launch parameter).

Space Mapping

Note: transitioning to space
mapping

Configuration

We define each space giving it a name (which will be displayed in Element), a unique ID (which
allows Group Sync to track the Space even if it gets renamed), and a list of groups whose users
will become the members of the Space. Users needs to be a member of any configured group, not
all of them.

You can pick any ID you want (taking note of the section above), but if you change it later Group
Sync will create a brand new space and abandon the old ones, likely confusing the users.

Each group may optionally include a powerLevel setting, allowing specific groups to have elevated
permissions in the space.

A special group ID of '' (an empty string) indicates that all users from the server, regardless of
their group membership, should become the members of the Space.

An optional list of subspaces may also be configured, each using the same configuration format
and behaviour (recursively).

The default Group Sync behaviour is equivalent to the following Space Mapping:

In order to limit space membership to a specific Group, we include its Group ID. This is equivalent
to the group_filter configuration option.

With powerLevel option allows us to give users extra permissions. This is equivalent to the
group_power_level setting[^note].

[^note]: In the LDAP bridge group_power_level is the only way to assign permissions to spaces
automatically generated from LDAP OrgUnits. If you define both space mapping and
group_power_level in your configuration, group_power_level will only be used for the automatically

generated spaces, it will not be taken into account for the spaces defined manually in your space
mapping config.

spaces:

 id: root

 name: 'Company'

 groups:

 - externalId: '' # include all users, not limited to any group

spaces:

 id: root

 name: 'Company'

 groups:

 - externalId: 'element-users'

spaces:

In case of Power Level conflicts, the highest power level will be used. With the following
configuration:

A user who's a member of both moderators and admins will end up with Power Level of 100.

Subspaces can be configured analogically:

 id: root

 name: 'Company'

 groups:

 # regular users

 - externalId: 'element-users'

 # moderators

 - externalId: 'element-moderators'

 powerLevel: 50

spaces:

 id: root

 name: 'Company'

 groups:

 - externalId: 'moderators'

 powerLevel: 50

 - externalId: 'admins'

 powerLevel: 100

spaces:

 id: shared

 name: "Element Corp"

 groups:

 - externalId: 'matrix-mods'

 powerLevel: 50

 - externalId: ''

 subspaces:

 - id: london

 name: "London Office"

 groups:

 - externalId: 'london-matrix-mods'

 powerLevel: 50

 - externalId: 'london-employees'

The Dimension Integration Manager ships with a number of integrations that do not work in an on-
premise environment. The following integrations are known to work with proper internet
connectivity:

Jitsi Widget
Hookshot Frontend

Please note that we recognise this situation is less than ideal. We will be working to improve the
situation around integrations in the near future.

Create dimension directory in ~/.element-onpremise-config/
Copy sample file from config-sample/dimension/dimension.yml in the installer directory to
 ~/.element-onpremise-config/dimension

Edit the file with the following values in ~/.element-onpremise-
config/dimension/dimension.yml :

dimension_fqdn : The access address to dimension. It should match something like
dimension.<fqdn.tld>

admins : List of mxids with admin access to dimension
widget_blocklist : CIDRs listed here will be blocked from becoming widgets.
postgres_fqdn : PostgreSQL server fqdn or ip
postgres_user : PostgreSQL username
postgres_db : PostgreSQL dimension database
postgres_password : PostgreSQL dimension password
bot_data_size : The size of the space allocated to bot data.

Setting Up the Integration
Manager With the Installer
Known Issues

On the hosting machine

mkdir ~/.element-onpremise-config/dimension

cp config-sample/dimension/dimension.yml ~/.element-onpremise-config/dimension/

bot_data_path : The path on the hosting machine to the space allocated to bot data
postgres_create_in_cluster : OPTIONAL. If doing a POC and using the same

PostgreSQL server as Synapse, set to true
verify_tls : OPTIONAL. If doing a POC with self-signed certs, set this to 0 . The

default is 1 .
Restart the install script

Create element directory in ~/.element-onpremise-config/ , if it doesn't already exist
Copy sample file from config-sample/element/dimension.json in the installer directory to
~/.element-onpremise-config/element/

Edit the file to replace < dimension_fqdn > to your dimension instance fqdn.
Restart the install script

On element

In Element Enterprise On-Premise, our GitLab, GitHub, and JIRA integrations are provided by the
hookshot package. This documentation explains how to configure the installer to install hookshot
and then how to interact with hookshot once installed.

Copy sample file from config-sample/hookshot/hookshot.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
logging_level : The logging level
hookshot_fqdn : The adress of hookshot webhook fqdn. It should match something

like hookshot.<fqdn.tld>
passkey : The name of the local key file. It can be generated using openssl -
openssl genrsa -out key.pem 4096

provisioning_secret : The provisioning secret used with integration managers.
Necessary for integration with dimension.
bot_display_name : The name of hookshot bot
bot_avatar : An mxc:// uri to the hookshot bot avatar image.
verify_tls : Optional. If doing a POC with self-signed certificates, set this to 0.

Defaults to 1.
Restart the install script

Setting up GitLab, GitHub,
and JIRA Integrations With
the Installer

Configuring Hookshot with the
Installer

Enabling GitHub Integration
On GitHub

This bridge requires a GitHub App. You will need to create one.
On the callback URL, set the following one : https://<hookshot_fqdn>/oauth and enable
Request user authorization (OAuth) during installation

On the webhook URL, set the following one : https://<hookshot_fqdn>/
For the webhook secret, you can generate one using pwgen 32 1 to generate one for
example. Keep it somewhere safe, you'll need to to configure the bridge.
Set the following permissions for the webhook :

Repository
Actions (read)
Contents (read)
Discussions (read & write)
Issues (read & write)
Metadata
Projects (read & write)
Pull requests (read & write)

Organisation
Team Discussions (read & write)

Copy sample file from config-sample/hookshot/github.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
github_auth_id : The AppID given in your github app page
github_key_file : The key file received via the Generate a private key button under
Private keys section of the github app page.
github_webhook_secret : The webhook secret configured in the app.
github_oauth_client_id : The OAuth ClientID of the github app page.
github_oauth_client_secret : The OAuth Client Secret of the github app page.
github_oauth_default_options A mapping to enable special oauth options.

Restart the install script

As an administrator of the room, invite the hookshot bot
Start a private conversation with the bot
Type github login
Follow the link to connect the bot to the configured app
If you have setup Dimension, you can use the integration manager to add a bridge to
github

On the installation

In Element's room

https://github.com/settings/apps/new

Add a webhook under the group or the repository you are targeting
On the webhook URL, set the following one : https://<hookshot_fqdn>/
For the webhook secret, you can generate one using pwgen 32 1 to generate one for
example. Keep it somewhere safe, you'll need to to configure the bridge.
You should add the events you wish to trigger on. Hookshot currently supports:

Push events
Tag events
Issues events
Merge request events
Releases events

Copy sample file from config-sample/hookshot/gitlab.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
gitlab_instances : A mapping of the GitLab servers

git.example.org : Replace with name of the GitLab server
url : Replace with URL of the GitLab server

gitlab_webhook_secret : The secret configured in the webhook.

As an administrator of the room, invite the hookshot bot
Run the command !hookshot gitlab project https://mydomain/my/project to bridge a
project to the room

This should be done for all JIRA organisations you wish to bridge. The steps may differ for
SaaS and on-prem, but you need to go to the webhooks configuration page under

Enabling GitLab integration
On GitLab

On the installation

In Element's room

Enabling JIRA integration
On JIRA

Settings > System. It should point to https://<hookshot_fqdn>/
For the webhook secret, you can generate one using pwgen 32 1 to generate one for
example. Keep it somewhere safe, you'll need to to configure the bridge.

The JIRA service currently only supports atlassian.com (JIRA SaaS) when handling user
authentication. Support for on-prem deployments is hoping to land soon.

You'll first need to head to https://developer.atlassian.com/console/myapps/create-3lo-
app/ to create a "OAuth 2.0 (3LO)" integration.
Once named and created, you will need to:
Enable the User REST, JIRA Platform REST and User Identity APIs under Permissions.
Use rotating tokens under Authorisation.
Set a callback url. This will be the public URL to hookshot with a path of /jira/oauth.
Copy the client ID and Secret from Settings

Copy sample file from config-sample/hookshot/jira.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
jira_webhook_secret : The webhook secret configured
jira_oauth_client_id : If Oauth is enabled, it should point to the ClientID in Jira's App

page. Else, you can keep it empty.
jira_oauth_client_secret : If Oauth is enabled, it should point to the Client secret in

Jira's App page. Else, you can keep it empty.

As an administrator of the room, invite the hookshot bot
If you have setup Dimension, you can use the integration manager to add a bridge to
JIRA. There is currently a limitation - it only works for public rooms.

Enable OAuth

On the installation

In Element's room

Enabling generic webhooks
integration

https://developer.atlassian.com/console/myapps/create-3lo-app/
https://developer.atlassian.com/console/myapps/create-3lo-app/

Copy sample file from config-sample/hookshot/generic.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
generic_enabled : true to enable it
generic_allow_js_transformation_functions : true if you want to enable javascript

transformations
generic_user_id_prefix : Choose a prefix for the users generated by hookshot for

webhooks you'll create

As an administrator of the room, invite the hookshot bot
Type !hookshot webhook <name of the webhook>
The bot will answer with a URL that you can set up as a webhook.
Please ensure that the Content-Type is set to the type matching what the webhook sends
If you have setup Dimension, you can use the integration manager to add a bridge to a
new webhook

On the installation

In Element's room

https://matrix-org.github.io/matrix-hookshot/latest/setup/webhooks.html#javascript-transformations
https://matrix-org.github.io/matrix-hookshot/latest/setup/webhooks.html#javascript-transformations

Starting with Installer version 2022.07-03, we have enabled the configuration of our Adminbot and
Auditbot products, which are available as add-ons to our Enterprise customers.

Adminbot allows for an Element Administrator to become admin in any existing room or space on
a managed homeserver. This enables you to delete rooms for which the room administrator has
left your company and other useful administration actions.

Auditbot allows you to have the ability to export any communications in any room that the
auditbot is a member of, even if encryption is in use. This is important in enabling you to handle
compliance requirements that require chat histories be obtainable.

This document details how to configure the Adminbot and Auditbot themselves, but you will also
need to install and configure our Enterprise Admin Dashboard so that an Element Administrator
can log in and then log in as the Adminbot or Auditbot and perform specific functions.

Start by copying config-sample/adminbot/adminbot.yml into your configuration directory, by running
these commands from your installer directory:

The above assumes that ~/.element-onpremise-config is your configuration directory. Change it as
necessary.

The config starts with these items:

Setting up Adminbot and
Auditbot
Overview

Configuring Admin Bot

mkdir ~/.element-onpremise-config/adminbot

cp config-sample/adminbot/adminbot.yml ~/.element-onpremise-config/adminbot/

bot_backup_phrase: # your secret storage backup phrase

bot_data_path: /mnt/data/adminbot

Let's discuss them:

bot_backup_phrase: This is the security phrase that will guard access to your
encryption keys. Do NOT share this phrase with anyone. This is required.
bot_data_path: This is the directory where the bot's data will be stored. If you need to
change the path, please do, but for most cases, you can leave this alone.
bot_data_size: In most cases, you can leave this at 10M, but it does put a limit on the
amount of data that can be written by the bot to the path.
enable_dm_admin: This defaults to false and that behavior means that adminbot will
not join DMs. If you want full control of DMs, simply set this to true .

Once this configuration is in place, you can re-run the installer and watch adminbot come up and
then start joining rooms on your server. You may also choose to continue configuring audit bot and
then the Enterprise Admin Dashboard prior to re-running the installer.

Start by copying config-sample/auditbot/auditbot.yml into your configuration directory, by running
these commands from your installer directory:

The above assumes that ~/.element-onpremise-config is your configuration directory. Change it as
necessary.

The config starts with these items:

bot_data_size: 10M

enable_dm_admin: false

Configuring Audit Bot

mkdir ~/.element-onpremise-config/auditbot

cp config-sample/auditbot/auditbot.yml ~/.element-onpremise-config/auditbot/

bot_backup_phrase: # your secret storage backup phrase

bot_data_path: /mnt/data/auditbot

bot_data_size: 10M

enable_dm_audit: false

optional :the S3 bucket where to store the audit logs

#s3_bucket:

#s3_access_key_id:

Let's discuss them:

bot_backup_phrase: This is the security phrase that will guard access to your
encryption keys. Do NOT share this phrase with anyone. This is required.
bot_data_path: This is the directory where the bot's data will be stored. If you need to
change the path, please do, but for most cases, you can leave this alone.
bot_data_size: In most cases, you can leave this at 10M, but it does put a limit on the
amount of data that can be written by the bot to the path.
enable_dm_admin: This defaults to false and that behavior means that adminbot will
not join DMs. If you want full control of DMs, simply set this to true .

Once this configuration is in place, you can re-run the installer and watch auditbot come up and
then start joining rooms on your server. You may also choose to continue configuring the
Enterprise Admin Dashboard prior to re-running the installer.

Please see this document on Configuring the Enterprise Admin Dashboard

#s3_secret_access_key:

#s3_key_prefix:

#s3_region:

#s3_endpoint:

optional : the local logfile settings. Used if s3 bucket is not enabled.

logfile_size: 1M

logfile_keep: 3

Enterprise Admin Dashboard

https://ems-docs.element.io/books/element-on-premise-documentation/page/configuring-the-enterprise-admin-dashboard

Our Enterprise Admin Dashboard gives you the ability to manage users, rooms, the Adminbot, and
the Auditbot. In the future, we will be expanding the functionality of this dashboard.

Start by copying config-sample/synapseadminui/synapseadminui.yml into your configuration
directory, by running these commands from your installer directory:

The above assumes that ~/.element-onpremise-config is your configuration directory. Change it as
necessary.

The config has these items:

Let's discuss them:

synapseadmin_fqdn: This is an fqdn with PEM encoded SSL certificates that the installer
can use to host the Enterprise Admin Dashboard.
admin_elementweb_fqdn: This is an fqdn with PEM encoded SSL certificates that the
installer can use to host a special Element Web Application that is used only by the
Adminbot and Auditbot for the purpose of logging in these users.

For each of these FQDNs, you will need to make sure that a PEM encoded .crt and .key pair are
in the certs directory of the configuration directory.

Configuring the Enterprise
Admin Dashboard
Overview

Configuring the Admin Dashboard

mkdir ~/.element-onpremise-config/synapseadminui

cp config-sample/synapseadminui/synapseadminui.yml ~/.element-onpremise-config/synapseadminui/

synapseadmin_fqdn: <admin fqdn>

admin_elementweb_fqdn: <special elementwen web admin fqdn>

If you are not using delegated authentication, you will also need to set one more variable in your
secrets.yml in the configuration directory and that is:

Replacing <password> with the actual password that you want to use to be able to login to the
Admin Dashboard with the onprem-admin-donotdelete user.

If you are using delegated authentication, then you will need to give synapse admin privileges to
one of your users. Let's say that your user who needs to have admin is named bob@local. To give
this user

Once you have done this, re-run the installer and after the pods have come up, you will be able to
access the Enterprise Admin Dashboard at the provided FQDN.

adminuser_password: <password>

kubectl exec -n element-onprem -it pods/postgres-0 -- /usr/bin/psql -d synapse -U

synapse_user -c "update users set admin = 1 where name = 'bob@local';"

Chatterbox allows for the embedding of a light-weight matrix-based chat client into any standard
website. Chatterbox can be configured in two main modes:

Invite mode: A user interacting with a "chatterbox" is assigned a guest account and
placed into a room on a homeserver. In this mode, one specifies a list of agents who
should be monitoring these chats and these users are notified of the new guest account
and invited into the same room. In this manner, customers can have agents staffing chat
requests through Chatterbox.
Join room mode: In this mode, "chatterbox" joins an existing room on a homeserver and
anyone visiting the webpage with this "chatterbox" can see the chat in the room and
interact with the room. This is good for chat that runs alongside a video presentation for
instance.

Copy config-sample/chatterbox/chatterbox.yml.sample into a file called chatterbox/chatterbox.yml
in your configuration directory.

Create a certificate for the fqdn of chatterbox (chatterbox.example) and add that PEM based
.crt/.key pair to your certs/ directory.

Edit the values of chatterbox/chatterbox.yml and set the following:

username_prefix : This defaults to chatters, but you can change this.
chatterbox_fqdn : Set the fqdn for the chatterbox service.
operating_mode : Set this to JoinRoom to have your Chatterbox instance join a specific

room on startup. Set this to Invite mode if each client session of cahtterbox should have
its own room.

If using JoinRoom : Define auto_join_room : The room the operator bot should join
automatically. Use the ID of the room. To get it, on element, open room settings on
the right panel, Advanced. You must provide the ID of the room and not the
published address. Room IDs will look similar to: !bYSJwxpJxShZVjoSoF:local

Setting Up Chatterbox
What is Chatterbox?

How to set up Chatterbox

If using Invite : Define bot_operator_username : The name of the bot inviting
responders
header_title : The name of Chatterbox widget
header_avatar : The icon of the Chatterbox widget
encrypt_room : true to enable Chatterbox rooms encryption. Else, false .
bot_data_size : The size of the bot directory.
bot_data_path : The bot data path on the local machine, if deploying on microk8s.
max_users : The maximum number of chatterbox users.
responders : The list of the users which should respond to new chatterbox chats.

Use the matrix address of each user.
should_avoid_offline_responders : true to avoid inviting absent users. Else, false .
responder_group_router : all invites all the responsders. roundrobin uses a round

robin algorithm to fairly distribute invites. random chooses a random user from the
list.

On the website that you'd like chatterbox set up on, add the following code:

replacing <chatterbox_fqdn> with the value specified in the config file.

Deploying Chatterbox to Your
Website

 <script>

 window.CHATTERBOX_CONFIG_LOCATION = "https://<chatterbox_fqdn>/chatterbox-

webconfig/config.json";

 </script>

 <script src="https://<chatterbox_fqdn>/assets/parent.js" type="module" id="chatterbox-

script"></script>

 </body>

Copy sample file from config-sample/prometheus/prom.yml to the prometheus sub-directory
within your config folder
If you want to write prometheus data to a remote prometheus instance, please define
these 4 variables :

remote_write_url : The URL of the endpoint to which to push remote writes
remote_write_external_labels : The labels to add to your data, to identify the writes

from this cluster
remote_write_username : The username to use to push the writes
remote_write_password : The password to use to push the writes

You can configure which prometheus components you want to deploy :
deploy_prometheus : true to deploy prometheus
deploy_node_exporter : requires prometheus deployment. Set to true to gather data

about the k8s nodes.
deploy_kube_control_plane_monitoring : requires prometheus deployment. Set to true to

gather data about the kube controle plane.
deploy_kube_state_metrics : requires prometheus deployment. Set to true to gather data

about kube metrics.
deploy_element_service_monitors : Set to true to create ServiceMonitor resources into

the K8S cluster. Set it to true if you want to monitor your element services stack using
prometheus.
You can choose to deploy grafana on the cluster :

deploy_grafana : true
grafana_fqdn : The FQDN of the grafana application
grafana_data_path : /mnt/data/grafana
grafana_data_size : 1G

Setting up On-Premise
Metrics
Setting up prometheus and
grafana (Starting from installer
2022-08.02)

After running the installer, open the FQDN of Grafana. The initial login user is admin and password
is admin . You'll be required to set a new password, please define one secured and keep it in a safe
place.

Troubleshooting the Element Installer comes down to knowing a little bit about kubernetes and
how to check the status of the various resources. This guide will walk you through some of the
initial steps that you'll want to take when things are going wrong.

Sometimes there will be problems when running the ansible-playbook portion of the installer.
When this happens, you can increase the verbosity of ansible logging by editing .ansible.rc in
the installer directory and setting:

and re-running the installer. This will generate quite verbose output, but that typically will help
pinpoint what the actual problem with the installer is.

In general, a well-functioning Element stack has at it's minimum the following containers
(or pods in kubernetes language) running:

[user@element2 ~]$ kubectl get pods -n element-onprem

NAME READY STATUS RESTARTS AGE

instance-synapse-main-0 1/1 Running 4 (27h ago) 6d21h

postgres-0 1/1 Running 2 (27h ago) 6d21h

app-element-web-688489b777-v7l2m 1/1 Running 6 (27h ago) 6d22h

server-well-known-55bdb6b66-m8px6 1/1 Running 2 (27h ago) 6d21h

Troubleshooting
Introduction to Troubleshooting

install.sh problems

export ANSIBLE_DEBUG=true

export ANSIBLE_VERBOSITY=4

Problems post-installation
Checking Pod Status and Getting Logs

The above kubectl get pods -n element-onprem is the first place to start. You'll notice in
the above, all of the pods are in the Running status and this indicates that all should be
well. If the state is anything other than "Running" or "Creating", then you'll want to grab
logs for those pods. To grab the logs for a pod, run:

replacing <pod name> with the actual pod name. If we wanted to get the logs from
synapse, the specific syntax would be:

and this would generate logs similar to:

instance-synapse-haproxy-554bd57975-z2ppv 1/1 Running 3 (27h ago) 6d21h

kubectl logs -n element-onprem <pod name>

kubectl logs -n element-onprem instance-synapse-main-0

 2022-05-03 17:46:33,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2887 - Dropped 0 items from caches

2022-05-03 17:46:33,375 - synapse.storage.databases.main.metrics - 471 - INFO -

generate_user_daily_visits-289 - Calling _generate_user_daily_visits

2022-05-03 17:46:58,424 - synapse.metrics._gc - 118 - INFO - sentinel - Collecting

gc 1

2022-05-03 17:47:03,334 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2888 - Dropped 0 items from caches

2022-05-03 17:47:33,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2889 - Dropped 0 items from caches

2022-05-03 17:48:03,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2890 - Dropped 0 items from caches

Again, for every pod not in the Running or Creating status, you'll want to use the above
procedure to get the logs for Element to look at.
If you don't have any pods in the element-onprem namespace as indicated by running the
above command, then you should run:

[user@element2 ~]$ kubectl get pods -A

NAMESPACE NAME READY STATUS

RESTARTS AGE

container-registry registry-5f697bb7df-dbzpq 1/1 Running

6 (27h ago) 6d22h

kube-system dashboard-metrics-scraper-69d9497b54-hdrdq 1/1 Running

6 (27h ago) 6d22h

kube-system hostpath-provisioner-7764447d7c-jckkc 1/1 Running

11 (17h ago) 6d22h

element-onprem instance-synapse-main-0 1/1 Running

4 (27h ago) 6d22h

element-onprem postgres-0 1/1 Running

2 (27h ago) 6d22h

element-onprem app-element-web-688489b777-v7l2m 1/1 Running

6 (27h ago) 6d22h

element-onprem server-well-known-55bdb6b66-m8px6 1/1 Running

2 (27h ago) 6d21h

kube-system calico-kube-controllers-6966456d6b-x4scn 1/1 Running

6 (27h ago) 6d22h

element-onprem instance-synapse-haproxy-554bd57975-z2ppv 1/1 Running

3 (27h ago) 6d21h

kube-system calico-node-l28tp 1/1 Running

6 (27h ago) 6d22h

kube-system coredns-64c6478b6c-h5jp4 1/1 Running

6 (27h ago) 6d22h

ingress nginx-ingress-microk8s-controller-n6wmk 1/1 Running

6 (27h ago) 6d22h

operator-onprem osdk-controller-manager-5f9d86f765-t2kn9 2/2 Running

9 (17h ago) 6d22h

kube-system metrics-server-679c5f986d-msfc5 1/1 Running

6 (27h ago) 6d22h

kube-system kubernetes-dashboard-585bdb5648-vrn42 1/1 Running

10 (17h ago) 6d22h

This is the output from a healthy system, but if you have any of these pods not in the
Running or Creating state, then please gather logs using the following syntax:

kubectl logs -n <namespace> <pod name>

So to gather logs for the kubernetes ingress, you would run:

and you would see logs similar to:

kubectl logs -n ingress nginx-ingress-microk8s-controller-n6wmk

I0502 14:15:08.467258 6 leaderelection.go:248] attempting to acquire leader

lease ingress/ingress-controller-leader...

I0502 14:15:08.467587 6 controller.go:155] "Configuration changes detected,

backend reload required"

I0502 14:15:08.481539 6 leaderelection.go:258] successfully acquired lease

ingress/ingress-controller-leader

I0502 14:15:08.481656 6 status.go:84] "New leader elected" identity="nginx-

Again, for all pods not in the Running or Creating state, please use the above method to
get log data to send to Element.

ingress-microk8s-controller-n6wmk"

I0502 14:15:08.515623 6 controller.go:172] "Backend successfully reloaded"

I0502 14:15:08.515681 6 controller.go:183] "Initial sync, sleeping for 1

second"

I0502 14:15:08.515705 6 event.go:282] Event(v1.ObjectReference{Kind:"Pod",

Namespace:"ingress", Name:"nginx-ingress-microk8s-controller-n6wmk", UID:"548d9478-

094e-4a19-ba61-284b60152b85", APIVersion:"v1", ResourceVersion:"524688",

FieldPath:""}): type: 'Normal' reason: 'RELOAD' NGINX reload triggered due to a

change in configuration

Some other commands that may yield some interesting data while troubleshooting are:

Verify DNS names and IPs in certificates
In the certs directory under the configuration directory, run:

This will give you output similar to:

and this will allow you to verify that you have the right host names and IP addresses in
your certificates.

for i in $(ls *crt); do echo $i && openssl x509 -in $i -noout -text | grep DNS; done

local.crt

 DNS:local, IP Address:192.168.122.118, IP Address:127.0.0.1

synapse2.local.crt

 DNS:synapse2.local, IP Address:192.168.122.118, IP Address:127.0.0.1

Show all persistent volumes and persistent volume claims for the element-onprem
namespace:

This will give you output similar to:

kubectl get pv -n element-onprem

NAME CAPACITY ACCESS MODES RECLAIM

POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-9fc3bc29-2e5d-4b88-a9cd-a4c855352404 20Gi RWX

Delete Bound container-registry/registry-claim microk8s-

hostpath 55d

Other Commands of Interest

synapse-media 50Gi RWO

Delete Bound element-onprem/synapse-media microk8s-

hostpath 7d

postgres 5Gi RWO

Delete Bound element-onprem/postgres microk8s-

hostpath 7d

Show the synapse configuration:
For installers prior to 2022-05.06, use:

and this will return output similar to:

For the 2022-05.06 installer and later, use:

and you will get output similar to the above.

kubectl describe cm -n element-onprem instance-synapse-shared

send_federation: True

start_pushers: True

turn_allow_guests: true

turn_shared_secret: n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons

turn_uris:

- turns:turn.matrix.org?transport=udp

- turns:turn.matrix.org?transport=tcp

turn_user_lifetime: 86400000

kubectl -n element-onprem get secret synapse-secrets -o yaml 2>&1 | grep shared.yaml

| awk -F 'shared.yaml: ' '{print $2}' - | base64 -d

Show the Element Web configuration:

and this will return output similar to:

kubectl describe cm -n element-onprem app-element-web

config.json:

{

 "default_server_config": {

 "m.homeserver": {

 "base_url": "https://synapse2.local",

 "server_name": "local"

 }

 },

 "dummy_end": "placeholder",

 "integrations_jitsi_widget_url":

"https://dimension.element2.local/widgets/jitsi",

 "integrations_rest_url": "https://dimension.element2.local/api/v1/scalar",

 "integrations_ui_url": "https://dimension.element2.local/element",

 "integrations_widgets_urls": [

 "https://dimension.element2.local/widgets"

]

}

Show the nginx configuration for Element Web: (If using nginx as your ingress
controller in production or using the PoC installer.)

and this will return output similar to:

kubectl describe cm -n element-onprem app-element-web-nginx

 server {

 listen 8080;

 add_header X-Frame-Options SAMEORIGIN;

 add_header X-Content-Type-Options nosniff;

 add_header X-XSS-Protection "1; mode=block";

 add_header Content-Security-Policy "frame-ancestors 'self'";

 add_header X-Robots-Tag "noindex, nofollow, noarchive, noimageindex";

 location / {

 root /usr/share/nginx/html;

 index index.html index.htm;

 charset utf-8;

 }

 }

Check list of active kubernetes events:

You will see a list of events or the message No resources found .

kubectl get events -A

Show the state of services in the element-onprem namespace:

kubectl get services -n element-onprem

This should return output similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

postgres ClusterIP 10.152.183.47 <none>

5432/TCP 6d23h

app-element-web ClusterIP 10.152.183.60 <none>

80/TCP 6d23h

server-well-known ClusterIP 10.152.183.185 <none>

80/TCP 6d23h

instance-synapse-main-headless ClusterIP None <none>

80/TCP 6d23h

instance-synapse-main-0 ClusterIP 10.152.183.105 <none>

80/TCP,9093/TCP,9001/TCP 6d23h

instance-synapse-haproxy ClusterIP 10.152.183.78 <none>

80/TCP 6d23h

Show the status of the stateful sets in the element-onprem namespace:

This should return output similar to:

kubectl get sts -n element-onprem

NAME READY AGE

postgres 1/1 6d23h

instance-synapse-main 1/1 6d23h

Show deployments in the element-onprem namespace:

This will return output similar to:

kubectl get deploy -n element-onprem

NAME READY UP-TO-DATE AVAILABLE AGE

app-element-web 1/1 1 1 6d23h

server-well-known 1/1 1 1 6d23h

instance-synapse-haproxy 1/1 1 1 6d23h

Show the status of all namespaces:

which will return output similar to:

kubectl get namespaces

NAME STATUS AGE

kube-system Active 20d

kube-public Active 20d

kube-node-lease Active 20d

default Active 20d

ingress Active 6d23h

container-registry Active 6d23h

operator-onprem Active 6d23h

element-onprem Active 6d23h

View the MAU Settings in Synapse:

which will return output similar to:

kubectl get -n element-onprem secrets/synapse-secrets -o yaml | grep -i shared.yaml

-m 1| awk -F ': ' '{print $2}' - | base64 -d

Local custom settings

mau_stats_only: true

limit_usage_by_mau: False

max_mau_value: 1000

mau_trial_days: 2

mau_appservice_trial_days:

 chatterbox: 0

enable_registration_token_3pid_bypass: true

Redeploy the micro8ks setup
It is possible to redeploy microk8s by running the following command as root:

This command does remove all microk8s pods and related microk8s storage volumes.
Once this command has been run, you need to reboot your server.
After the reboot, you can re-run the installer and have it re-deploy microk8s and Element
Enterprise On-Premise for you.

snap remove microk8s

Archived Documentation
Repository

Archived Documentation Repository

element-on-premise-documentation-july28-2022.pdf

Documentation covering v1
and installers prior to 2022-
07.03

https://ems-docs.element.io/attachments/1

/mnt (or a common root for all <component>_data_path variables) should be a distinct
mount point

Ideally this would have an independent lifecycle from the server itself
Ideally this would be easily snapshot-able, either at a filesystem level or with the
backing storage

Files stored with uid=10006/gid=10006, sample config uses /mnt/data/adminbot for
single-node instances

The backing path for single node instances can be changed by setting bot_data_path
in the adminbot config directory

Storage space required is proportional to the number of user devices on the server. 1GB
is sufficient for most servers

The size of the PVC can be changed by setting bot_data_size in the adminbot config
directory

Files stored with uid=10006/gid=10006, sample config uses /mnt/data/auditbot for
single-node instances

The backing path for single node instances can be changed by setting bot_data_path
in the auditbot config directory

Storage space required is proportional to the number of events tracked. 1GB is sufficient
with the sample config logfile_size / logfile_keep values

Single Node Installs:
Storage and Backup
Guidelines
General storage recommentations for
single-node instances

Adminbot storage:

Auditbot storage:

The size of the PVC can be changed by setting bot_data_size in the auditbot config
directory

Files stored with uid=10008/gid=10008, sample config uses /mnt/media/chatterbox-bot-
data for single-node instances

The backing path for single node instances can be changed by setting bot_data_path
in the chatterbox config directory

Storage space required is proportional to the number of user devices on the server. 1GB
is sufficient for most servers

The size of the PVC can be changed by setting bot_data_size in the chatterbox
config directory

Main:
File stored with uid=10005/gid=1000, sample config uses /mnt/dimension for single-
node instances

The backing path for single node instances can be changed by setting
bot_data_path in the dimension config directory

Storage space is constant to store a single file. 10M is sufficient for every server
The size of the PVC can be changed by setting bot_data_size in the dimension
config directory

Postgres (in-cluster):
Files stored with uid=999/gid=999, sample config does not specify a default path
for single-node instances

The backing path for single node instances can be changed by setting
postgres_data_path in the dimension config directory

Storage space is proportional to the number of integration instances. 5GB is
sufficient for most servers

The size of the PVC can be changed by setting postgres_storage_size in the
dimension directory folder

Media:
File stored with uid=10991/gid=10991, sample config uses /mnt/data/synapse-media
for single-node instances

The backing path for single node instances can be changed by setting
media_host_data_path in parameters.yml

Chatterbox storage:

Dimension storage :

Synapse storage:

Storage space required grows with the number and size of uploaded media. 50GB is
used as a starting point for PoC but can easily be exceeded depending on your use-
case

The size of the PVC can be changed by setting media_size in parameters.yml

Files stored with uid=999/gid=999, sample config uses /mnt/data/synapse-postgres for
single-node instances

The backing path for single node instances can be changed by setting
postgres_data_path in parameters.yml

Storage space is proportional to the activity on the homeserver. 5GB is used as a starting
point for PoC but can easily be exceeded depending on traffic

The size of the PVC can be changed by setting postgres_storage_size in
parameters.yml

Adminbot:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the
backing directory to backup storage

Auditbot:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the
backing directory to backup storage

Chatterbox:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the
backing directory to backup storage

Dimension:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the
backing directory to backup storage

Synapse Media:
Backups should be made by taking a snapshot of the PV (ideally) or rsyncing the
backing directory to backup storage

Postgres (in-cluster):
Backups should be made by kubectl -n element-onprem exec -it postgres-synapse-0
-- sh -c 'pg_dump -U $POSTGRES_USER $POSTGRES_DB' > synapse_postgres_backup_$(date
+%Y%m%d-%H%M%S).sql

Postgres (external):
Backup procedures as per your DBA

Configuration:
Please ensure that your entire configuration directory (that contains at least
parameters.yml & secrets.yml but may also include other sub-directories &

configuration files) is regularly backed up

Postgres (in-cluster) storage:

Backup Guidance:

The suggested configuration path in Element's documentation is ~/.element-
onpremise-config but could be anything. It is whatever directory you used with

the installer.

For Element Enterprise On-Premise, we support the following:

Installation and Operation (Configuring the Installer, Debugging Issues)
Synapse Usage/Configuration/Prioritised Bug Fixes
Element Web Usage/Configuration/Prioritised Bug Fixes
Integrations

Delegated Auth (e.g. SAML/LDAP) (Add-on)
Group Sync (LDAP, AD Graph API, SCIM supported) (Add-on)
Github / Gitlab
JIRA
Webhooks
Jitsi
Chatterbox (Add-on)
Adminbot (Add-on)
Auditbot (Add-on)

For Element On-Premise, we support the following:

Installation and Operation (Configuring the Installer, Debugging Issues)
Synapse Usage/Configuration/Prioritised Bug Fixes
Element Web Usage/Configuration/Prioritised Bug Fixes
Integrations

Github / Gitlab
JIRA
Webhooks
Jitsi

The following items are not included in support coverage:

General Infrastructure Assistance
K8s Assistance
Operating System Support
Postgresql Database Support

For single node setups, the following also applies:

Element does not support deployment to a microk8s that was not installed by our
installer.

On-Premise Support Scope
of Coverage

Element does not provide a backup solution.
Element does not provide support for any underlying storage.

