
How to Install a POC Environment
How to Install a Production Environment
Setting up Permalinks With the Installer
Setting up Jitsi With the Installer
Setting up Delegated Authentication With the Installer
Setting up Group Sync with the Installer
Setting Up the Integration Manager With the Installer
Setting up GitLab, GitHub, and JIRA Integrations With the Installer
Setting Up Chatterbox
Troubleshooting
Migrating From 0.6.1 to 1.0

Element On-
Premise
Documentation

Our Element Enterprise PoC Installer can handle the installation of Element Proof of Concept (POC)
environments. Our standard POC environment is a single node server with microk8s running that
we deploy our Element Enterprise Operator to, resulting in a fully functioning Synapse server with
Element Web that can be used to conduct a POC. On-premise production deployments use the
same installer and operator, but are intended to be deployed into a full kubernetes environment.

POC installations are not intended to be run for production purposes. You should plan on having a
different installation for your production environment. The settings that you use with the installer
will carry over for your production install, but your rooms and spaces will not.

To get started with a POC installation, there are several things that need to be considered and this
guide will work through them:

Hostnames/DNS
Machine Size
Operating System
Users
Network Specifics
Postgresql Database
TURN Server
SSL Certificates
Extra configuration items

Once these areas have been covered, you’ll be able to install a POC environment!

You will need hostnames for the following pieces of infrastructure:

Element Server (Required)
Synapse Server (Required)

How to Install a POC
Environment
Overview

Hostnames/DNS

Dimension Server (Required if you plan to use hookshot)
Hookshot Server (Required if you need jira, gitlab, or github integrations)

These hostnames must resolve to the appropriate IP addresses. If you have a proper DNS server
with records for these hostnames in place, then you will be good to go.

/etc/hosts may be used as an alternative to proper DNS in a POC scenario only. In this case, you
will need entries similar to:

In the absence of proper DNS, for this to work in microk8s, you will also need to add the following
to your parameters.yml: (This was added in installer version 2022-05.03. If you have an installer
prior to this and need this functionality, please update.)

For running a proof of concept with our installer, we support only the x86_64 architecture and
recommend the following minimums:

No federation: 4 vCPUs/CPUS and 16GB RAM
Federation: 8 vCPUs/CPUS and 32GB RAM

192.168.122.39 element.local element

192.168.122.39 synapse.local synapse

192.168.122.39 dimension.local dimension

192.168.122.39 hookshot.local hookshot

192.168.122.39 local

host_aliases:

 - ip: "192.168.122.39"

 hostnames:

 - "element.local"

 - "synapse.local"

 - "hookshot.local"

 - "dimension.local"

 - "local"

Machine Size

Operating System

To get started, we have tested on Ubuntu 20.04 and Red Hat Enterprise Linux 8.5 and suggest that
you start there as well. For x86_64, you can grab an Ubuntu iso here:

https://releases.ubuntu.com/20.04.3/ubuntu-20.04.3-live-server-amd64.iso

or you can get Red Hat Enterprise Linux 8 with a Developer Subscription

https://developers.redhat.com/content-gateway/file/rhel-8.5-aarch64-dvd.iso

Note that future references in this document to EL reference Enterprise Linux.

Make sure to select docker as a package option. Do set up ssh.

Once you log in, please run:

Make sure to select "Container Management" in the "Additional Software" section.

Once you log in, please run:

Add the following lines to /etc/security/limits.conf :

Ubuntu Specific Directions

sudo apt-get update

sudo apt-get upgrade

EL Specific directions

sudo yum update -y

sudo yum install podman-docker python39-pip -y

sudo yum install

https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm -y

sudo alternatives --set python3 /usr/bin/python3.9

* soft nofile 100000

* hard nofile 100000

Further Pre-requisites

https://releases.ubuntu.com/20.04.3/ubuntu-20.04.3-live-server-amd64.iso
https://developers.redhat.com/products/rhel/download
https://developers.redhat.com/content-gateway/file/rhel-8.5-aarch64-dvd.iso

You should have the installer unpacked in a directory on your server. We will refer to this as the
installer directory. You will also need to create a configuration directory that we will call the config
directory. Both the parameters.yml and secrets.yml file live in the config directory.

To create the configuration directory, run the following:

Please run the following commands to create the /mnt/data directory and install the python3-
signedjson and pwgen packages which will be used during the configuration of the installer.

The /mnt/data directory should have at least 50 GB of space.

If you will be letting the installer install the Postgres database for you, also do:

Ubuntu:

EL:

EL: (as a normal user)

Element Enterprise On-Premise needs to bind and serve content over:

Port 80 TCP
Port 443 TCP

microk8s needs to bind and serve content over:

Port 16443 TCP
Port 10250 TCP

mkdir ~/.element-onpremise-config

sudo mkdir /mnt/data

sudo mkdir /mnt/data/synapse-media

sudo mkdir /mnt/data/synapse-postgres

sudo apt-get install python3-signedjson pwgen -y

sudo yum install make gcc python39-devel pwgen -y

pip3 install signedjson --user

Network Specifics

Port 10255 TCP
Port 25000 TCP
Port 12379 TCP
Port 10257 TCP
Port 10259 TCP
Port 19001 TCP

For more information, see https://microk8s.io/docs/ports.

In a default Ubuntu installation, these ports are allowed through the firewall. You will need to
ensure that these ports are passed through your firewall.

For EL, you need to explicitly open the above ports and enabling masquerading:

Further, you need to make sure that your host is able to access the following hosts on the internet:

api.snapcraft.io
*.snapcraftcontent.com
gitlab.matrix.org
gitlab-registry.matrix.org
pypi.org
docker.io
*.docker.com
get.helm.sh

Further, you will also need to make sure that your host can access your distributions' package
repositories. As these hostnames can vary, it is beyond the scope of this documentation to
enumerate them.

We also cover the case where you need to use a proxy to access the internet. Please make sure
that the following host variables are set:

If your company's proxy is http://corporate.proxy:3128 , you would edit /etc/environment and add
the following lines:

sudo firewall-cmd --add-service={http,https} --permanent

sudo firewall-cmd --add-port=16443/tcp --add-port=10250/tcp --add-port=10255/tcp --add-

port=25000/tcp --add-port=12379/tcp --add-port=10257/tcp --add-port=10259/tcp --add-

port=19001/tcp --permanent

sudo firewall-cmd --add-masquerade --permanent

sudo firewall-cmd --reload

Network Proxies

Ubuntu Specific Directions

https://microk8s.io/docs/ports

The IP Ranges specified to NO_PROXY and no_proxy are specific to the microk8s cluster and
prevent microk8s traffic from going over the proxy.

Using the same example of having a company proxy at http://corporate.proxy:3128 , you would
edit /etc/profile.d/http_proxy.sh and add the following lines:

The IP Ranges specified to NO_PROXY and no_proxy are specific to the microk8s cluster and
prevent microk8s traffic from going over the proxy.

You will need to log out and back in for the environment variables to be re-read after setting them.
If you already have microk8s running, you will need to issue:

to have it reload the new environment variables.

If you need to use an authenticated proxy, then the URL schema for both EL and Ubuntu is as
follows:

protocol:user:password@host:port

So if your proxy is corporate.proxy and listens on port 3128 without SSL and requires a username
of bob and a password of inmye1em3nt then your url would be formatted:

http://bob:inmye1em3nt@corporate.proxy:3128

HTTPS_PROXY=http://corporate.proxy:3128

HTTP_PROXY=http://corporate.proxy:3128

https_proxy=http://corporate.proxy:3128

http_proxy=http://corporate.proxy:3128

NO_PROXY=10.1.0.0/16,10.152.183.0/24,127.0.0.1

no_proxy=10.1.0.0/16,10.152.183.0/24,127.0.0.1

EL Specific Directions

export HTTP_PROXY=http://corporate.proxy:3128

export HTTPS_PROXY=http://corporate.proxy:3128

export http_proxy=http://corporate.proxy:3128

export https_proxy=http://corporate.proxy:3128

export NO_PROXY=10.1.0.0/16,10.152.183.0/24,127.0.0.1

export no_proxy=10.1.0.0/16,10.152.183.0/24,127.0.0.1

In Conclusion

microk8s.stop

microk8s.start

For further help with proxies, we suggest that you contact your proxy administrator or operating
system vendor.

The installer requires that you run it as a non-root user who has sudo permissions. Please make
sure that you have a user who can use sudo . If you wanted to make a user called element-demo
that can use sudo , the following commands (run as root) would achieve that:

On Ubuntu:

On EL:

Please make sure that you unpack element-enterprise-installer onto your POC system. The
directory that it unpacks into will be referenced in this document as the installer directory.

The installation requires that you have a postgresql database with a locale of C and UTF8 encoding
set up. See https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-
database for further details.

If you have this already, please make note of the database name, user, and password as you will
need these to begin the installation.

If you do not already have a database, then the PoC installer will set up PostgreSQL on your behalf.

Users

useradd element-demo

gpasswd -a element-demo sudo

useradd element-demo

gpasswd -a element-demo wheel

Unpacking the Installer

Postgresql Database

TURN Server

https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-database
https://github.com/matrix-org/synapse/blob/develop/docs/postgres.md#set-up-database

For installations in which you desire to use video conferencing functionality, you will need to have
a TURN server installed and available for Element to use.

If you do not have an existing TURN server, we recommend installing coturn . Instructions on how
to do that are available here: https://github.com/matrix-org/synapse/blob/master/docs/turn-
howto.md (Note: On EL, you can do yum install coturn -y .)

Under "Synapse Setup" in the above instructions, you'll see what to change on the config. With the
installer, you can create a file called synapse/turn.yml in your config directory and put the
following in it:

based on how you installed the TURN server. This will allow the installer to configure synapse to
use your TURN server.

A few notes on TURN servers:

The TURN server has to be directly accessible by end-users. Normally this means a public
IP, however if all the end-users are going to be on a VPN/private network then they just
need to be able to access the private IP of the TURN server.
The only reason to have TURN on a private network is if the private network disallows
user <-> user traffic and only allows user <-> TURN server traffic. If user <-> user is
allowed within the private network then a TURN server isn't needed.

For SSL Certificates, you have three options:

Signed PEM encoded certificates from an internet recognized authority.
Signed PEM encoded certificates from an internal to your company authority.
LetsEncrypt
Self-signed certificates

In the case of Signed certificates or LetsEncrypt, your hostnames must be accessible on the
internet.

In the case of self-signed certificates, these are acceptable for a PoC environment, but will not be
supported in a production environment as the security risk would be too high. Configuring mobile
clients and federation will not be possible with self-signed certificates.

turn_uris: ["turn:turn.matrix.org?transport=udp", "turn:turn.matrix.org?transport=tcp"]

turn_shared_secret: "n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons"

turn_user_lifetime: 86400000

turn_allow_guests: True

SSL Certificates

https://github.com/matrix-org/synapse/blob/master/docs/turn-howto.md
https://github.com/matrix-org/synapse/blob/master/docs/turn-howto.md

You will need to configure certificates for the following names:

fqdn.tld
element.fqdn.tld
synapse.fqdn.tld
dimension.fqdn.tld
hookshot.fqdn.tld

Using our example hosts, this would mean that we need certificates for:

local
element.local
synapse.local
dimension.local
hookshot.local

If you have certificates for all of the aforementioned host names, then you can simply place the
.crt and .key files in the certs directory under the installer directory. Certificates in the certs

directory must take the form of fqdn.cert and fqdn.key .

The following instructions will enable you to use a tool called mkcert to generate self-signed
certificates. Element nor Canonical ship this tool and so these directions are provided as one
example of how to get self-signed certificates.

Ubuntu:

EL:

Both EL and Ubuntu:

Certificates without LetsEncrypt

Self-signed certificates with mkcert

sudo apt-get install wget libnss3-tools

sudo yum install wget nss-tools -y

wget

https://github.com/FiloSottile/mkcert/releases/download/v1.4.3/mkcert-v1.4.3-linux-amd64

sudo mv mkcert-v1.4.3-linux-amd64 /usr/bin/mkcert

sudo chmod +x /usr/bin/mkcert

Once you have mkcert executable, you can run:

Now, you can verify the CA Root by doing:

Your output may not be exactly the same, but it should be similar. Once we’ve done this, we need
to generate self-signed certificates for our hostnames. The following is an example of how to do it
for element.local . You will need to do this for all of the aforementioned hostnames, including the
fqdn.tld .

The run for the element fqdn looks like this:

Once you have self-signed certificates, you need to copy them into the certs directory under the
config directory. Certificates in the certs directory must take the form of fqdn.crt and fqdn.key .

Using our above example, these are the commands we would need to run from the installer
directory: (We ran mkcert in that directory as well.)

mkcert -install

The local CA is now installed in the system trust store! ⚡️

mkcert -CAROOT

/home/element-demo/.local/share/mkcert

mkcert element.local element 192.168.122.39 127.0.0.1

Created a new certificate valid for the following names

- "element.local"

- "element"

- "192.168.122.39"

- "127.0.0.1"

The certificate is at "./element.local+3.pem" and the key at

"./element.local+3-key.pem" ✅

It will expire on 1 May 2024

mkdir ~/.element-onpremise-config/certs

cp element.local+3.pem ~/.element-onpremise-config/certs/element.local.crt

cp element.local+3-key.pem ~/.element-onpremise-config/certs/element.local.key

cp synapse.local+3.pem ~/.element-onpremise-config/certs/synapse.local.crt

cp synapse.local+3-key.pem ~/.element-onpremise-config/certs/synapse.local.key

cp dimension.local+3.pem ~/.element-onpremise-config/certs/dimension.local.crt

Our installer also supports using LetsEncrypt to build certificates for your host names and
automatically install them into your environment. If your hosts are internet accessible, this is the
easiest method and only requires an admin email address to provide to LetsEncrypt.

Now it is time to set parameters.yml . A sample has been provided and to get started, it is easiest
to do:

Using the example hostnames of element.local and synapse.local (not resolvable on the
internet), we would set the following parameters first in parameters.yml :

Next, we need to set the variables related to Postgres. If you do not have an existing Postgres
server, do not make any changes. If you have an existing Postgres server, set the following:

The next item in the configuration is the microk8s DNS resolvers. By default, the installer will use
Google's publicly available DNS servers. If you have defined your hosts on a non-publicly available
DNS server, then you should use your DNS servers instead of the publicly available Google DNS
servers. Let's assume that your local dns servers are 192.168.122.253 and 192.168.122.252. To
use those servers, you would need to add this line:

cp dimension.local+3-key.pem ~/.element-onpremise-config/certs/dimension.local.key

cp hookshot.local+3.pem ~/.element-onpremise-config/certs/hookshot.local.crt

cp hookshot.local+3-key.pem ~/.element-onpremise-config/certs/hookshot.local.key

cp local+2.pem ~/.element-onpremise-config/certs/local.crt

cp local+2-key.pem ~/.element-onpremise-config/certs/local.key

Certificates with LetsEncrypt

parameters.yml

cp config-sample/parameters.yml.sample ~/.element-onpremise-config/parameters.yml

domain_name: local

element_fqdn: element.local

synapse_fqdn: synapse.local

postgres_create_in_cluster: false

postgres_fqdn: `Postgres Server`

postgres_user: `Postgres User`

postgres_db: `Postgres Database for Element`

The next section pertains to certmanager. If you are using your own certificates, please leave
these items both blank, as such:

If you have chosen to use letsencrypt, please specify “letsencrypt” for the certmanager_issue and
an actual email address for who should manage the certificates for certmanager_admin_email:

Now we move on to configuring secrets.yml . You will need the following items here:

A Macaroon key
Your postgres password for the user specified in parameters.yml
A Registration Shared Secret
A signing Key
An EMS Image Store username and token, which will have been provided to you by
Element.

To build a secrets.yml with the macaroon key, the registration shared secret, the generic shared
secret, and the signing key already filled in, please run:

If you are using your own Postgres server, you will need to uncomment and fill in the
postgres_passwd . If you are letting the installer install Postgres for you, then you will need to set a

random password. You can generate a random password with:

and then insert that value in the postgres_passwd field, making sure that you uncomment the line.

Do not forget to also set the values for ems_image_store_username and ems_image_store_token ,
which will both be provided by Element.

microk8s_dns_resolvers: "192.168.122.253,192.168.122.252"

certmanager_issuer:

certmanager_admin_email:

certmanager_issuer: 'letsencrypt'

certmanager_admin_email: 'admin@mydomain.com'

secrets.yml

sh build_secrets.sh

mv secrets.yml ~/.element-onpremise-config/

pwgen 32 1

If you have a paid docker hub account, you can specify your username and password to avoid
being throttled in the dockerhub_username and dockerhub_token fields. This is optional.

It is possible to configure anything in Synapse's homeserver.yaml or Element’s config.json.

To do so, you need to create json or yaml files in the appropriate directory under the config
directory. These files will be merged to the target configuration file.

Samples are available in config-sample under the installer directory.

To configure synapse:

Create a directory synapse at the root of the config directory : mkdir ~/.element-
onpremise-config/synapse

Copy the configurations extensions you want to setup from config-sample/synapse to
~/.element-onpremise-config/synapse .
Edit the values in the file accordingly to your configuration

To configure element:

Create a directory element at the root of the installer directory : mkdir ~/.element-
onpremise-config/element

Copy the configurations extensions you want to setup from config-sample/element to
~/.element-onpremise-config/element .
Edit the values in the file accordingly to your configuration

For specifics on configuring permalinks for Element, please see Setting up Permalinks With the
Installer

For specifics on setting up Delegated Authentication, please see Setting up Delegated
Authentication With the Installer

For specifics on setting up Group Sync, please see Setting up Group Sync with the Installer

For specifics on setting up the Integration Manager, please see Setting Up the Integration Manager
With the Installer

For specifics on setting up GitLab, GitHub, and JIRA integrations, please see Setting up GitLab,
GitHub, and JIRA Integrations With the Installer

Extra Configuration Items

https://github.com/matrix-org/synapse/blob/develop/docs/sample_config.yaml
https://github.com/vector-im/element-web/blob/develop/docs/config.md
https://ems-docs.element.io/setting-up-permalinks-with-the-installer
https://ems-docs.element.io/setting-up-permalinks-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-group-sync-with-the-installer
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer

For specifics on pointing your installation at an existing Jitsi instance, please see Setting up Jitsi
With the Installer

Let’s review! Have you considered:

Hostnames/DNS
Operating System
Users
Network Specifics
Postgresql Database
TURN Server
SSL Certificates
Extra configuration items

Once you have the above sections taken care of and your parameters.yml and secrets.yml files
are in order, you are ready to begin the actual installation.

From the installer directory, run: (Note: You can replace ~/.element-onpremise-config with
whatever you have specified for your config directory.)

The first run should go for a little while and then exit, instructing you to log out and back in.

Please log out and back in and re-run the installer from the installer directory again:

Once this has finished, you can run:

And you should get similar output to:

Installation

bash install.sh ~/.element-onpremise-config

bash install.sh ~/.element-onpremise-config

kubectl get pods -n element-onprem

NAME READY STATUS RESTARTS AGE

app-element-web-c5bd87777-rqr6s 1/1 Running 1 29m

server-well-known-8c6bd8447-wddtm 1/1 Running 1 29m

postgres-0 1/1 Running 1 40m

instance-synapse-main-0 1/1 Running 2 29m

https://ems-docs.element.io/setting-up-jitsi-with-the-installer
https://ems-docs.element.io/setting-up-jitsi-with-the-installer

At this time, you should also be able to browse to: https://fqdn and create a test account with
Element on your new homeserver. Using our example values, I am able to go to
https://element.local/ and register an account, sign in and begin testing the proof of concept!

instance-synapse-haproxy-5b4b55fc9c-hnlmp 1/1 Running 0 20m

Our Element Enterprise Production Installer can handle the installation of Element Enterprise into
your production k8s environment.

To get started with a production installation, there are several things that need to be considered
and this guide will work through them:

Hostnames/DNS
Resource Requirements
k8s Environments
Postgresql Database
TURN Server
SSL Certificates
Extra configuation items

Once these areas have been covered, you'll be able to install a production environment!

You will need hostnames for the following pieces of infrastructure:

Element Server
Synapse Server
Dimension Server
Hookshot Server

These hostnames must resolve to the appropriate IP addresses. You should have a proper DNS
server to serve these records in a production environment.

In the event that you do not have a prop

How to Install a Production
Environment

Hostnames/DNS

Resource Requirements

For running running in production, we support only the x86_64 architecture and recommend the
following minimums:

No federation: 4 vCPUs/CPUS and 16GB RAM
Federation: 8 vCPUs/CPUS and 32GB RAM

Please make sure that you unpack element-enterprise-installer onto a system that has access to
your k8s environment. The directory that it unpacks into will be referenced in this document as the
installer directory.

You will also need to create a directory for holding the configurations for the installer. This will be
referenced as the config directory going forward.

Element Enterprise Installer allows you to either deploy directly into a kubernetes environment or
to render a set of manifests for a future deployment in a kubernetes environment.

To configure your kubernetes environment for a direct deployment, you need to :

Configure a kubectl context able to connect to your kubernetes instance
Copy k8s.yml.sample to k8s.yml in your config directory. Edit k8s.yml with the following
values :
provider_storage_class_name : The storage class to use when creating PVCs.
ingress_annotations : The annotations to add to the ingresses created by the operator.
tls_managed_externally : Should be true if you don't expect the operator to manage the

certificates of your kubernetes deployment. In this case, you will be able to skip the *
Certificates- chapter of the CONFIGURE.md file.
operator_namespace : The namespace to create to deploy the operator.
element_namespace : The namespace to create to deploy the element resources.
k8s_auth_context : The value of the context used in kubectl. If you want to use cert-

manager for your tls certificates, it needs to be already installed in the targeted k8s
cluster.

An example k8s.yml file would look like:

Unpacking the Installer

mkdir ~/.element-onpremise-config

k8s Environments

provider_storage_class_name: gp8-delete # select an available storage class

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://cert-manager.io/docs/configuration/acme/
https://cert-manager.io/docs/configuration/acme/

If you do not want to deploy directly to kubernetes, but wish to render manifests instead, set all of
the above mentioned variables except for k8s_auth_context and define a value for the parameter
out_dir , which specifies where to write the kubernetes manifests. Further, when you go to run the

installer, you need to invoke it as such:

Using the above syntax, you will have a set of manifests written out to out_dir that you can then
deploy into your kubernetes environment.

N.B. You will need to set your ingress controller's upload size to be at least 50 Mb to match
synapse's default upload size if you wish to be able to have users upload files up to 50 Mb in size.
Instructions for doing this with nginx are included in the parameters.yml section below.

ingress_annotations: ## below are expected annotations for an aws deployment

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/group.name: global

 alb.ingress.kubernetes.io/target-type: ip

 alb.ingress.kubernetes.io/ip-address-type: ipv4

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80},{"HTTPS": 443}]'

synapse_ingress_annotations: # below are required annotations if using the NGINX ingress

controller

 nginx.ingress.kubernetes.io/proxy-body-size: "50m"

tls_managed_externally: true # true if the certificates are managed externaly to k8s

security_context_force_uid_gid: true # true to enable pod runAsUser and fsGroup in security

context. false if it should not be used, in the case of openshift for example.

security_context_set_seccomp: true # true to enable RuntimeDefault pod seccomp. false if it

should not be used, in the case of openshift for example.

operator_namespace: <namespace to create to deploy the operator>

element_namespace: <namespace to create to deploy the element resources>

k8s_auth_context: <the k8s auth context>

out_dir: # Absolute path to the directory where to render manifests, if render mode is used

operator_manager_limits: # Can be used to defined upper limits if the default one are not

large enough for your operator deployment

cpu: "2"

memory: 8Gi

bash install.sh ~/.element-onpremise-config --target render

Postgresql Database

The installation requires that you have a postgresql database with a locale of C and UTF8 encoding
set up. See https://matrix-org.github.io/synapse/latest/postgres.html#set-up-database for further
details.

Please make note of the database hostname, database name, user, and password as you will need
these to begin the installation.

For installations in which you desire to use video conferencing functionality, you will need to have
a TURN server installed and available for Element to use.

If you do not have an existing TURN server, we recommend installing coturn outside of your k8s
environment. coturn must open a lot of ports to work and this can be problematic for k8s
environments. Instructions on how to do that are available here: https://github.com/matrix-
org/synapse/blob/master/docs/turn-howto.md (Note: On EL, you can do yum install coturn -y .)

Under "Synapse Setup" in the above instructions, you'll see what to change on the config. With the
installer, you can create a file called synapse/turn.yml in your config directory and put the
following in it:

based on how you installed the TURN server. This will allow the installer to configure synapse to
use your TURN server.

A few notes on TURN servers:

The TURN server has to be directly accessible by end-users. Normally this means a public
IP, however if all the end-users are going to be on a VPN/private network then they just
need to be able to access the private IP of the TURN server.
The only reason to have TURN on a private network is if the private network disallows
user <-> user traffic and only allows user <-> TURN server traffic. If user <-> user is
allowed within the private network then a TURN server isn't needed.

TURN Server

turn_uris: ["turn:turn.matrix.org?transport=udp", "turn:turn.matrix.org?transport=tcp"]

turn_shared_secret: "n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons"

turn_user_lifetime: 86400000

turn_allow_guests: True

SSL Certificates

https://matrix-org.github.io/synapse/latest/postgres.html#set-up-database
https://github.com/matrix-org/synapse/blob/master/docs/turn-howto.md
https://github.com/matrix-org/synapse/blob/master/docs/turn-howto.md

For SSL Certificates, you have three options:

Signed certificates from an internet recognized authority.
LetsEncrypt
Signed certificates from an internal to your company authority.

In the case of Internet Recognized Signed certificates or LetsEncrypt, your hostnames must be
accessible on the internet.

If you have certificates for all of the aforementioned host names, then you can simply place the
.crt and .key files in the certs directory under the config directory. Certificates in the certs

directory must take the form of fqdn.cert and fqdn.key .

Our installer also supports using LetsEncrypt to build certificates for your host names and
automatically install them into your environment. If your hosts are internet accessible, this is the
easiest method and only requires an admin email address to provide to LetsEncrypt.

Now it is time to set parameters.yml . A sample has been provided and to get started, it is easiest
to do:

Using the example hostnames of element.local and synapse.local (not resolvable on the
internet), we would set the following parameters first in parameters.yml :

Next, we need to set the variables related to Postgres. For your Postgres server, please set the
following:

Certificates without LetsEncrypt

Certificates with LetsEncrypt

parameters.yml

cp parameters.yml.sample ~/.element-onpremise-config/parameters.yml

domain_name: local

element_fqdn: element.local

synapse_fqdn: synapse.local

postgres_fqdn: `Postgres Server`

postgres_user: `Postgres User`

The next item in the configuration is the microk8s DNS resolvers. By default, the installer will use
Google's publicly available DNS servers. If you have defined your hosts on a non-publicly available
DNS server, then you should use your DNS servers instead of the publicly available Google DNS
servers. Let's assume that your local dns servers are 192.168.122.253 and 192.168.122.252. To
use those servers, you would need to add this line:

The next section pertains to certmanager. If you are not using LetsEncrypt, please leave these
items both blank, as such:

If you have chosen to use LetsEncrypt, please specify “letsencrypt” for the certmanager_issue and
an actual email address for who should manage the certificates for certmanager_admin_email:

If you are using nginx as your ingress controller and wish to send files up to 50 Mb in size, please
add these two lines to parameters.yml:

Now we move on to configuring secrets.yml . You will need the following items here:

A Macaroon key
Your postgres password for the user specified in parameters.yml
A Registration Shared Secret
A signing Key
An EMS Image Store username and token, which will have been provided to you by
Element.

To build a secrets.yml with the macaroon key, the registration shared secret, the generic shared
secret, and the signing key already filled in, please run:

postgres_db: `Postgres Database for Element`

microk8s_dns_resolvers: "192.168.122.253,192.168.122.252"

certmanager_issuer:

certmanager_admin_email:

certmanager_issuer: 'letsencrypt'

certmanager_admin_email: 'admin@mydomain.com'

synapse_ingress_annotations:

 nginx.ingress.kubernetes.io/proxy-body-size: "50m"

secrets.yml

You will need to uncomment and set your postgres_password field to the proper password for your
database.

Do not forget to also set the values for ems_image_store_username and ems_image_store_token ,
which will both be provided by Element.

If you have a paid docker hub account, you can specify your username and password to avoid
being throttled in the dockerhub_username and dockerhub_token fields. This is optional.

It is possible to configure anything in Synapse's homeserver.yaml or Element’s config.json.

To do so, you need to create json or yaml files in the appropriate directory under the config
directory. These files will be merged to the target configuration file.

Samples are available in config-sample under the installer directory.

To configure synapse:

Create a directory synapse at the root of the config directory : mkdir ~/.element-
onpremise-config/synapse

Copy the configurations extensions you want to setup from config-sample/synapse to
~/.element-onpremise-config/synapse .
Edit the values in the file accordingly to your configuration

To configure element:

Create a directory element at the root of the config directory : mkdir ~/.element-
onpremise-config/element

Copy the configurations extensions you want to setup from config-sample/element to
~/.element-onpremise-config/element .
Edit the values in the file accordingly to your configuration

For specifics on configuring permalinks for Element, please see Setting up Permalinks.

For specifics on setting up Delegated Authentication, please see Setting up Delegated
Authentication With the Installer

For specifics on setting up Group Sync, please see Setting up Group Sync

sh build_secrets.sh

mv secrets.yml ~/.element-onpremise-config/

Extra Configuration Items

https://github.com/matrix-org/synapse/blob/develop/docs/sample_config.yaml
https://github.com/vector-im/element-web/blob/develop/docs/config.md
https://ems-docs.element.io/setting-up-permalinks
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-delegated-authentication-with-the-installer
https://ems-docs.element.io/setting-up-group-sync

For specifics on setting up the Integration Manager, please see Setting Up the Integration Manager
With the Installer

For specifics on setting up GitLab, GitHub, and JIRA integrations, please see Setting up GitLab,
GitHub, and JIRA Integrations With the Installer

For specifics on pointing your installation at an existing Jitsi instance, please see Setting up Jitsi
With the Installer

Let’s review! Have you considered:

Hostnames/DNS
k8s Environments
Postgresql Database
TURN Server
SSL Certificates
Extra configuration items

Once you have the above sections taken care of and your parameters.yml and secrets.yml files
are in order, you are ready to begin the actual installation.

From the installer directory, run:

The first run should go for a little while and then exit, instructing you to log out and back in.

Please log out and back in and re-run the installer from the installer directory again:

Installation

bash install.sh ~/.element-onpremise-config

bash install.sh ~/.element-onpremise-config

https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-the-integration-manager-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-gitlab-github-and-jira-integrations-with-the-installer
https://ems-docs.element.io/setting-up-jitsi-with-the-installer
https://ems-docs.element.io/setting-up-jitsi-with-the-installer

Copy sample file from config-sample/element/permalinks.json in the installer directory to
 ~/.element-onpremise-config/element

Edit the file :

Restart the install script

Setting up Permalinks With
the Installer
Element Extra Configurations

{

 "permalinkPrefix": "https://<element fqdn>"

}

By default, our installer will give you an instance of element-web configured to use the
meet.element.io Jitsi server. If you would like to specify your own Jitsi server for your element-web

instance to use, please follow these directions.

Create a file called jitsi.json in the ~/.element-onpremise-config/element directory.
Edit the file :

replacing your.jitsi.example.org with the hostname of your Jitsi server.

Restart the install script

Setting up Jitsi With the
Installer

Element Extra Configurations

{

 "jitsi": {

 "preferredDomain": "your.jitsi.example.org"

 }

}

Depending on your provider, copy the sample file in the installer root directory from
config-sample/synapse/ to ~/.element-onpremise-config/synapse

Edit the file for the provider you are setting up. You have at least 3 parameters to edit :
The IdP metadata url
The name and description of your synapse server, which your provider would
display to inform the users to which app they are logging in

Disable the local synapse user database and password workflows by creating a file
~/.element-onpremise-config/synapse/disable-local.yml and putting the following in it:

password_config:

 localdb_enabled: false

 enabled: false

Run the installer to configure SAML provisioning

Azure ADFS

Keycloak

Other SAML providers can be configured for use with Element Enterprise. Please contact Element
for further information in the event that you are not using one of the above providers.

Setting up Delegated
Authentication With the
Installer
On Element Enterprise

On the provider

Azure ADFS

https://ems-docs.element.io/./saml.html#azure-adfs
https://ems-docs.element.io/./saml.html#keycloak

With an account with enough rights, go to : Enterprise Applications Portal
Click on New Application
Click on Create your own application on the top left corner
Choose a name for it, and select Integrate any other application you don't find in the
gallery

Click on "Create"
Select Set up single sign on
Select SAML
Edit on Basic SAML Configuration

In Identifier , add the following URL : https://<synapse
fqdn>/_synapse/client/saml2/metadata.xml

Remove the default URL
In Reply URL , add the following URL : https://<synapse
fqdn>/_synapse/client/saml2/authn_response

Click on Save
Edit on Attributes & Claims

Remove all defaults additional claims
Click on Add new claim to add the following claims. The UID will be used as the MXID, the
value here is mostly a suggestion :

Name: uid , Transformation : ExtractMailPrefix , Parameter 1 :
user.userprincipalname

Name: email , Source attribute : user.mail
Name: displayName , Source attribute : user.displayname

Click on Save
In Users and Groups , add groups and users which may have access to element

In Configure > Clients , add a new client. Enter https://<synapse
fqdn>/_synapse/client/saml2/metadata.xml as its Client ID
In Mappers , add the 3 following mappers :

Name: uid : User attribute : username
Name: email , User attribute : email
Name: displayName , Javascript mapper : user.FirstName + " " + user.lastName

Keycloak

https://portal.azure.com/#blade/Microsoft_AAD_IAM/StartboardApplicationsMenuBlade/AllApps/menuId/

Group Sync allows you to use the ACLs from your identity infrastructure in order to set up
permissions on Spaces and Rooms in the Element Ecosystem. Please note that the initial version
we are providing only supports a single node, non-federated configuration.

Copy sample file from config-sample/groupsync/gsync.yml in the installer directory to
~/.element-onpremise-config/groupsync

Edit the file with the following values :
group_power_levels : A list of groups that'll determine people's Matrix power levels.

This affects only the space that the Group belongs to – doesn't leak up or down. For
MSGraph source, groups should be identified by their ids. On LDAP, they should be
identified by their names.
provisioner.dn_default_prefix : Display names starting with this prefix will get

corrected according to the names we found for their users in LDAP. Optional. Useful
if you're using an OIDC provider that doesn't give you users' display names.
provisioner.default_rooms : Optional. A list of rooms that'll get automatically

created in in managed space. The ID is required to enable Group Sync to track
whether they were already created or not. You can change it, but it'll cause new
rooms to be generated.
provisioner.whitelisted_users : Optional. A list of userid patterns that will not get

kicked from rooms even if they don't belong to them according to LDAP. This is
useful for things like the auditbot. Patterns listed here will be wrapped in ^ and $
before matching.
verify_tls : Optional. If doing a POC with self-signed certs, set this to 0. The

default value is 1.

Setting up Group Sync with
the Installer
What is Group Sync?

General settings

Configuring the source

You should create a ldap account with read access to the OUs containing the users
This account should use password authentication
To use LDAP source, copy the file config-sample/groupsync/ldap.yml in the installer
directory to ~/.element-onpremise-config/groupsync and edit the following variables :

ldap_check_interval_seconds : The interval check in seconds
ldap_uri : The LDAP Uri to connect to the ldap server
ldap_base : The LDAP base used to build the space hierarchy. This OU will become

the root space. Every OU below this base will be a child-space.
ldap_bind_dn : The user bind dn to use to read the space hierarchy.
ldap_bind_password : The user password
ldap_attrs_uid : The attribute to use to map to users mxids
ldap_attrs_name : The attribute to use to map to spaces names

Restart the install script

You need to create an App registration . You'll need the Tenant ID of the organization,
the Application (client ID) and a secret generated from Certificates & secrets on the
app.
For the bridge to be able to operate correctly, navigate to API permissions and ensure it
has access to Group.Read.All, GroupMember.Read.All and User.Read.All. Ensure that
these are Application permissions (rather than Delegated).
Remember to grant the admin consent for those.
To use MSGraph source, copy the file config-sample/groupsync/msgraph.yml in the installer
directory to ~/.element-onpremise-config/groupsync and edit the following variables :

msgraph_tenant_id : This is the "Tenant ID" from your Azure Active Directory
Overview
msgraph_client_id : Register your app in "App registrations". This will be its

"Application (client) ID"
msgraph_client_secret : Go to "Certificates & secrets", and click on "New client

secret". This will be the "Value" of the created secret (not the "Secret ID").
Restart the install script

LDAP Servers

MS Graph (Azure AD)

The Dimension Integration Manager ships with a number of integrations that do not work in an on-
premise environment. The following integrations are known to work with proper internet
connectivity:

Jitsi Widget
Hookshot Frontend

Please note that we recognise this situation is less than ideal. We will be working to improve the
situation around integrations in the near future.

Copy sample file from config-sample/dimension/dimension.yml in the installer directory to
 ~/.element-onpremise-config/dimension

Edit the file with the following values :
dimension_fqdn : The access address to dimension. It should match something like
dimension.<fqdn.tld>

admins : List of mxids with admin access to dimension
widget_blocklist : CIDRs listed here will be blocked from becoming widgets.
postgres_fqdn : PostgreSQL server fqdn or ip
postgres_user : PostgreSQL username
postgres_db : PostgreSQL dimension database
postgres_password : PostgreSQL dimension password
bot_data_size : The size of the space allocated to bot data.
bot_data_path : The path on the hosting machine to the space allocated to bot data
postgres_create_in_cluster : OPTIONAL. If doing a POC and using the same

PostgreSQL server as Synapse, set to true
verify_tls : OPTIONAL. If doing a POC with self-signed certs, set this to 0 . The

default is 1 .
Restart the install script

Setting Up the Integration
Manager With the Installer
Known Issues

On the hosting machine

Copy sample file from config-sample/element/dimension.json in the installer directory to
~/.element-onpremise-config/element

Edit the file to replace < dimension_fqdn > to your dimension instance fqdn.
Restart the install script

To enable BigBlueButton integration into Element through Dimension, you should set the following
variables.

bbb_api_base_url : The full base URL of the API of your BigBlueButton instance
bbb_shared_secret : The "shared secret" of your BigBlueButton instance. This is used to

authenticate to the API above.
bbb_widget_name : The title for BigBlueButton widgets that are generated by Dimension.
bbb_widget_title : The subtitle for BigBlueButton widgets that are generated by

Dimension.
bbb_widget_avatar_mxc : The avatar for BigBlueButton widgets that are generated by

Dimension. Usually this doen't need to be changed, however if your homeserver is not
able to reach t2bot.io then you should specify your own here.

On element

Enabling BigBlueButton

In Element Enterprise On-Premise, our GitLab, GitHub, and JIRA integrations are provided by the
hookshot package. This documentation explains how to configure the installer to install hookshot
and then how to interact with hookshot once installed.

Copy sample file from config-sample/hookshot/hookshot.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
logging_level : The logging level
hookshot_fqdn : The adress of hookshot webhook fqdn. It should match something

like hookshot.<fqdn.tld>
passkey : The name of the local key file. It can be generated using openssl -
openssl genrsa -out key.pem 4096

provisioning_secret : The provisioning secret used with integration managers.
Necessary for integration with dimension.
bot_name : The name of hookshot bot
bot_avatar : An mxc:// uri to the hookshot bot avatar image.
verify_tls : Optional. If doing a POC with self-signed certificates, set this to 0.

Defaults to 1.
Restart the install script

Setting up GitLab, GitHub,
and JIRA Integrations With
the Installer

Configuring Hookshot with the
Installer

Enabling GitHub Integration
On GitHub

This bridge requires a GitHub App. You will need to create one.
On the callback URL, set the following one : https://<hookshot_fqdn>/oauth and enable
Request user authorization (OAuth) during installation

On the webhook URL, set the following one : https://<hookshot_fqdn>/
For the webhook secret, you can generate one using pwgen 32 1 to generate one for
example. Keep it somewhere safe, you'll need to to configure the bridge.
Set the following permissions for the webhook :

Repository
Actions (read)
Contents (read)
Discussions (read & write)
Issues (read & write)
Metadata
Projects (read & write)
Pull requests (read & write)

Organisation
Team Discussions (read & write)

Copy sample file from config-sample/hookshot/github.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
github_auth_id : The AppID given in your github app page
github_key_file : The key file received via the Generate a private key button under
Private keys section of the github app page.
github_webhook_secret : The webhook secret configured in the app.
github_oauth_client_id : The OAuth ClientID of the github app page.
github_oauth_client_secret : The OAuth Client Secret of the github app page.
github_oauth_default_options A mapping to enable special oauth options.

Restart the install script

As an administrator of the room, invite the hookshot bot
Start a private conversation with the bot
Type github login
Follow the link to connect the bot to the configured app
If you have setup Dimension, you can use the integration manager to add a bridge to
github

On the installation

In Element's room

https://github.com/settings/apps/new

Add a webhook under the group or the repository you are targeting
On the webhook URL, set the following one : https://<hookshot_fqdn>/
For the webhook secret, you can generate one using pwgen 32 1 to generate one for
example. Keep it somewhere safe, you'll need to to configure the bridge.
You should add the events you wish to trigger on. Hookshot currently supports:

Push events
Tag events
Issues events
Merge request events
Releases events

Copy sample file from config-sample/hookshot/gitlab.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
gitlab_instances : A mapping of the GitLab servers

git.example.org : Replace with name of the GitLab server
url : Replace with URL of the GitLab server

gitlab_webhook_secret : The secret configured in the webhook.

As an administrator of the room, invite the hookshot bot
As an administrator of the room, run the command /devtools
Choose Send Custom Event
Switch the button Event to State Event by clicking on it
In Event Type , enter uk.half-shot.matrix-hookshot.gitlab.repository
In State key , enter a random value, for example generated after pwgen 32 1
In Event Content , enter :

Enabling GitLab integration
On GitLab

On the installation

In Element's room

{

 "instance": "<your instance name in gitlab.yml>",

 "path": "<username-or-group/repo>"

}

This should be done for all JIRA organisations you wish to bridge. The steps may differ for
SaaS and on-prem, but you need to go to the webhooks configuration page under
Settings > System. It should point to https://<hookshot_fqdn>/
For the webhook secret, you can generate one using pwgen 32 1 to generate one for
example. Keep it somewhere safe, you'll need to to configure the bridge.

The JIRA service currently only supports atlassian.com (JIRA SaaS) when handling user
authentication. Support for on-prem deployments is hoping to land soon.

You'll first need to head to https://developer.atlassian.com/console/myapps/create-3lo-
app/ to create a "OAuth 2.0 (3LO)" integration.
Once named and created, you will need to:
Enable the User REST, JIRA Platform REST and User Identity APIs under Permissions.
Use rotating tokens under Authorisation.
Set a callback url. This will be the public URL to hookshot with a path of /jira/oauth.
Copy the client ID and Secret from Settings

Copy sample file from config-sample/hookshot/jira.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
jira_webhook_secret : The webhook secret configured
jira_oauth_client_id : If Oauth is enabled, it should point to the ClientID in Jira's App

page. Else, you can keep it empty.
jira_oauth_client_secret : If Oauth is enabled, it should point to the Client secret in

Jira's App page. Else, you can keep it empty.

As an administrator of the room, invite the hookshot bot
If you have setup Dimension, you can use the integration manager to add a bridge to JIRA

Enabling JIRA integration
On JIRA

Enable OAuth

On the installation

In Element's room

https://developer.atlassian.com/console/myapps/create-3lo-app/
https://developer.atlassian.com/console/myapps/create-3lo-app/

Copy sample file from config-sample/hookshot/generic.yml in the installer directory to
~/.element-onpremise-config/hookshot

Edit the file with the following values :
generic_enabled : true to enable it
generic_allow_js_transformation_functions : true if you want to enable javascript

transformations
generic_user_id_prefix : Choose a prefix for the users generated by hookshot for

webhooks you'll create

As an administrator of the room, invite the hookshot bot
Type !hookshot webhook <name of the webhook>
The bot will answer with a URL that you can set up as a webhook.
Please ensure that the Content-Type is set to the type matching what the webhook sends
If you have setup Dimension, you can use the integration manager to add a bridge to a
new webhook

Enabling generic webhooks
integration
On the installation

In Element's room

https://matrix-org.github.io/matrix-hookshot/latest/setup/webhooks.html#javascript-transformations
https://matrix-org.github.io/matrix-hookshot/latest/setup/webhooks.html#javascript-transformations

Chatterbox allows for the embedding of a light-weight matrix-based chat client into any standard
website. Chatterbox can be configured in two main modes:

Invite mode: A user interacting with a "chatterbox" is assigned a guest account and
placed into a room on a homeserver. In this mode, one specifies a list of agents who
should be monitoring these chats and these users are notified of the new guest account
and invited into the same room. In this manner, customers can have agents staffing chat
requests through Chatterbox.
Join room mode: In this mode, "chatterbox" joins an existing room on a homeserver and
anyone visiting the webpage with this "chatterbox" can see the chat in the room and
interact with the room. This is good for chat that runs alongside a video presentation for
instance.

Copy config-sample/chatterbox/chatterbox.yml.sample into a file called chatterbox/chatterbox.yml
in your configuration directory.

Create a certificate for the fqdn of chatterbox (chatterbox.example) and add that PEM based
.crt/.key pair to your certs/ directory.

Edit the values of chatterbox/chatterbox.yml and set the following:

username_prefix : This defaults to chatters, but you can change this.
chatterbox_fqdn : Set the fqdn for the chatterbox service.
operating_mode : Set this to JoinRoom to have your Chatterbox instance join a specific

room on startup. Set this to Invite mode if each client session of cahtterbox should have
its own room.

If using JoinRoom : Define auto_join_room : The room the operator bot should join
automatically. Use the ID of the room. To get it, on element, open room settings on
the right panel, Advanced. You must provide the ID of the room and not the
published address. Room IDs will look similar to: !bYSJwxpJxShZVjoSoF:local

Setting Up Chatterbox
What is Chatterbox?

How to set up Chatterbox

If using Invite : Define bot_operator_username : The name of the bot inviting
responders
header_title : The name of Chatterbox widget
header_avatar : The icon of the Chatterbox widget
encrypt_room : true to enable Chatterbox rooms encryption. Else, false .
bot_data_size : The size of the bot directory.
bot_data_path : The bot data path on the local machine, if deploying on microk8s.
max_users : The maximum number of chatterbox users.
responders : The list of the users which should respond to new chatterbox chats.

Use the matrix address of each user.
should_avoid_offline_responders : true to avoid inviting absent users. Else, false .
responder_group_router : all invites all the responsders. roundrobin uses a round

robin algorithm to fairly distribute invites. random chooses a random user from the
list.

On the website that you'd like chatterbox set up on, add the following code:

replacing <chatterbox_fqdn> with the value specified in the config file.

Deploying Chatterbox to Your
Website

 <script>

 window.CHATTERBOX_CONFIG_LOCATION = "https://<chatterbox_fqdn>/chatterbox-

webconfig/config.json";

 </script>

 <script src="https://<chatterbox_fqdn>/assets/parent.js" type="module" id="chatterbox-

script"></script>

 </body>

Troubleshooting the Element Installer comes down to knowing a little bit about kubernetes and
how to check the status of the various resources. This guide will walk you through some of the
initial steps that you'll want to take when things are going wrong.

Sometimes there will be problems when running the ansible-playbook portion of the installer.
When this happens, you can increase the verbosity of ansible logging by editing .ansible.rc in
the installer directory and setting:

and re-running the installer. This will generate quite verbose output, but that typically will help
pinpoint what the actual problem with the installer is.

In general, a well-functioning Element stack has at it's minimum the following containers
(or pods in kubernetes language) running:

[user@element2 ~]$ kubectl get pods -n element-onprem

NAME READY STATUS RESTARTS AGE

instance-synapse-main-0 1/1 Running 4 (27h ago) 6d21h

postgres-0 1/1 Running 2 (27h ago) 6d21h

app-element-web-688489b777-v7l2m 1/1 Running 6 (27h ago) 6d22h

server-well-known-55bdb6b66-m8px6 1/1 Running 2 (27h ago) 6d21h

Troubleshooting
Introduction to Troubleshooting

install.sh problems

export ANSIBLE_DEBUG=true

export ANSIBLE_VERBOSITY=4

Problems post-installation
Checking Pod Status and Getting Logs

The above kubectl get pods -n element-onprem is the first place to start. You'll notice in
the above, all of the pods are in the Running status and this indicates that all should be
well. If the state is anything other than "Running" or "Creating", then you'll want to grab
logs for those pods. To grab the logs for a pod, run:

replacing <pod name> with the actual pod name. If we wanted to get the logs from
synapse, the specific syntax would be:

and this would generate logs similar to:

instance-synapse-haproxy-554bd57975-z2ppv 1/1 Running 3 (27h ago) 6d21h

kubectl logs -n element-onprem <pod name>

kubectl logs -n element-onprem instance-synapse-main-0

 2022-05-03 17:46:33,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2887 - Dropped 0 items from caches

2022-05-03 17:46:33,375 - synapse.storage.databases.main.metrics - 471 - INFO -

generate_user_daily_visits-289 - Calling _generate_user_daily_visits

2022-05-03 17:46:58,424 - synapse.metrics._gc - 118 - INFO - sentinel - Collecting

gc 1

2022-05-03 17:47:03,334 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2888 - Dropped 0 items from caches

2022-05-03 17:47:33,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2889 - Dropped 0 items from caches

2022-05-03 17:48:03,333 - synapse.util.caches.lrucache - 154 - INFO -

LruCache._expire_old_entries-2890 - Dropped 0 items from caches

Again, for every pod not in the Running or Creating status, you'll want to use the above
procedure to get the logs for Element to look at.
If you don't have any pods in the element-onprem namespace as indicated by running the
above command, then you should run:

[user@element2 ~]$ kubectl get pods -A

NAMESPACE NAME READY STATUS

RESTARTS AGE

container-registry registry-5f697bb7df-dbzpq 1/1 Running

6 (27h ago) 6d22h

kube-system dashboard-metrics-scraper-69d9497b54-hdrdq 1/1 Running

6 (27h ago) 6d22h

kube-system hostpath-provisioner-7764447d7c-jckkc 1/1 Running

11 (17h ago) 6d22h

element-onprem instance-synapse-main-0 1/1 Running

4 (27h ago) 6d22h

element-onprem postgres-0 1/1 Running

2 (27h ago) 6d22h

element-onprem app-element-web-688489b777-v7l2m 1/1 Running

6 (27h ago) 6d22h

element-onprem server-well-known-55bdb6b66-m8px6 1/1 Running

2 (27h ago) 6d21h

kube-system calico-kube-controllers-6966456d6b-x4scn 1/1 Running

6 (27h ago) 6d22h

element-onprem instance-synapse-haproxy-554bd57975-z2ppv 1/1 Running

3 (27h ago) 6d21h

kube-system calico-node-l28tp 1/1 Running

6 (27h ago) 6d22h

kube-system coredns-64c6478b6c-h5jp4 1/1 Running

6 (27h ago) 6d22h

ingress nginx-ingress-microk8s-controller-n6wmk 1/1 Running

6 (27h ago) 6d22h

operator-onprem osdk-controller-manager-5f9d86f765-t2kn9 2/2 Running

9 (17h ago) 6d22h

kube-system metrics-server-679c5f986d-msfc5 1/1 Running

6 (27h ago) 6d22h

kube-system kubernetes-dashboard-585bdb5648-vrn42 1/1 Running

10 (17h ago) 6d22h

This is the output from a healthy system, but if you have any of these pods not in the
Running or Creating state, then please gather logs using the following syntax:

kubectl logs -n <namespace> <pod name>

So to gather logs for the kubernetes ingress, you would run:

and you would see logs similar to:

kubectl logs -n ingress nginx-ingress-microk8s-controller-n6wmk

I0502 14:15:08.467258 6 leaderelection.go:248] attempting to acquire leader

lease ingress/ingress-controller-leader...

I0502 14:15:08.467587 6 controller.go:155] "Configuration changes detected,

backend reload required"

I0502 14:15:08.481539 6 leaderelection.go:258] successfully acquired lease

ingress/ingress-controller-leader

I0502 14:15:08.481656 6 status.go:84] "New leader elected" identity="nginx-

Again, for all pods not in the Running or Creating state, please use the above method to
get log data to send to Element.

ingress-microk8s-controller-n6wmk"

I0502 14:15:08.515623 6 controller.go:172] "Backend successfully reloaded"

I0502 14:15:08.515681 6 controller.go:183] "Initial sync, sleeping for 1

second"

I0502 14:15:08.515705 6 event.go:282] Event(v1.ObjectReference{Kind:"Pod",

Namespace:"ingress", Name:"nginx-ingress-microk8s-controller-n6wmk", UID:"548d9478-

094e-4a19-ba61-284b60152b85", APIVersion:"v1", ResourceVersion:"524688",

FieldPath:""}): type: 'Normal' reason: 'RELOAD' NGINX reload triggered due to a

change in configuration

Some other commands that may yield some interesting data while troubleshooting are:

Show all persistent volumes and persistent volume claims for the element-onprem
namespace:

This will give you output similar to:

kubectl get pv -n element-onprem

NAME CAPACITY ACCESS MODES RECLAIM

POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-9fc3bc29-2e5d-4b88-a9cd-a4c855352404 20Gi RWX

Delete Bound container-registry/registry-claim microk8s-

hostpath 55d

synapse-media 50Gi RWO

Delete Bound element-onprem/synapse-media microk8s-

hostpath 7d

postgres 5Gi RWO

Delete Bound element-onprem/postgres microk8s-

hostpath 7d

Show the synapse configuration:
For installers prior to 2022-05.06, use:

and this will return output similar to:

kubectl describe cm -n element-onprem instance-synapse-shared

Other Commands of Interest

For the 2022-05.06 installer and later, use:

and you will get output similar to the above.

send_federation: True

start_pushers: True

turn_allow_guests: true

turn_shared_secret: n0t4ctuAllymatr1Xd0TorgSshar3d5ecret4obvIousreAsons

turn_uris:

- turns:turn.matrix.org?transport=udp

- turns:turn.matrix.org?transport=tcp

turn_user_lifetime: 86400000

kubectl -n element-onprem get secret synapse-secrets -o yaml 2>&1 | grep shared.yaml

| awk -F 'shared.yaml: ' '{print $2}' - | base64 -d

Show the Element Web configuration:

and this will return output similar to:

kubectl describe cm -n element-onprem app-element-web

config.json:

{

 "default_server_config": {

 "m.homeserver": {

 "base_url": "https://synapse2.local",

 "server_name": "local"

 }

 },

 "dummy_end": "placeholder",

 "integrations_jitsi_widget_url":

"https://dimension.element2.local/widgets/jitsi",

 "integrations_rest_url": "https://dimension.element2.local/api/v1/scalar",

 "integrations_ui_url": "https://dimension.element2.local/element",

 "integrations_widgets_urls": [

 "https://dimension.element2.local/widgets"

]

}

Show the nginx configuration for Element Web: (If using nginx as your ingress
controller in production or using the PoC installer.)

and this will return output similar to:

kubectl describe cm -n element-onprem app-element-web-nginx

 server {

 listen 8080;

 add_header X-Frame-Options SAMEORIGIN;

 add_header X-Content-Type-Options nosniff;

 add_header X-XSS-Protection "1; mode=block";

 add_header Content-Security-Policy "frame-ancestors 'self'";

 add_header X-Robots-Tag "noindex, nofollow, noarchive, noimageindex";

 location / {

 root /usr/share/nginx/html;

 index index.html index.htm;

 charset utf-8;

 }

 }

Check list of active kubernetes events:

You will see a list of events or the message No resources found .

kubectl get events -A

Show the state of services in the element-onprem namespace:

This should return output similar to:

kubectl get services -n element-onprem

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

postgres ClusterIP 10.152.183.47 <none>

5432/TCP 6d23h

app-element-web ClusterIP 10.152.183.60 <none>

80/TCP 6d23h

server-well-known ClusterIP 10.152.183.185 <none>

80/TCP 6d23h

instance-synapse-main-headless ClusterIP None <none>

80/TCP 6d23h

instance-synapse-main-0 ClusterIP 10.152.183.105 <none>

80/TCP,9093/TCP,9001/TCP 6d23h

instance-synapse-haproxy ClusterIP 10.152.183.78 <none>

80/TCP 6d23h

Show the status of the stateful sets in the element-onprem namespace:

This should return output similar to:

kubectl get sts -n element-onprem

NAME READY AGE

postgres 1/1 6d23h

instance-synapse-main 1/1 6d23h

Show deployments in the element-onprem namespace:

This will return output similar to:

kubectl get deploy -n element-onprem

NAME READY UP-TO-DATE AVAILABLE AGE

app-element-web 1/1 1 1 6d23h

server-well-known 1/1 1 1 6d23h

instance-synapse-haproxy 1/1 1 1 6d23h

Show the status of all namespaces:

which will return output similar to:

kubectl get namespaces

NAME STATUS AGE

kube-system Active 20d

kube-public Active 20d

kube-node-lease Active 20d

default Active 20d

ingress Active 6d23h

container-registry Active 6d23h

operator-onprem Active 6d23h

element-onprem Active 6d23h

Destroy the micro8ks setup
If you wish to start over, you can reset the microk8s setup by doing:

WARNING: This will destroy all of your microk8s containers and storage. Use with caution.

microk8s.reset --destroy-storage

With the release of the 1.0 installer, we've made some changes that we think will greatly improve
your experience with the installer, but which also require some changes to your 0.6.1
environment. This document will walk through the following changes:

New configuration directory structure.
Switching to the EMS Image Store registry.

Our on-premise installer operates on the premise that to get new updates for your environment,
you download the latest version of the installer and run the installer again. Prior to the 1.0 release,
this also required copying configuration files from one installer directory to the new installer
directory. In 1.0, we are introducing a new configuration directory structure that will make it much
simpler to download the latest installer and run it, without having to worry about moving
configuration files around.

To move configuration from 0.6.1 to 1.0, please do the following:

Now, we need to copy files from the 0.6.1 installer directory into this new configuration directory.
For this example, I will assume that you have the 0.6.1 installer unpacked into ~/element-
enterprise-installer-0.6.1 . Given this assumption, here is what you would need to do:

Migrating From 0.6.1 to 1.0
Introduction

New Configuration Directory
Structure

mkdir ~/.element-onpremise-config

cd ~/element-enterprise-installer-0.6.1

cp parameters.yml ~/.element-onpremise-config/

cp secrets.yml ~/.element-onpremise-config/

cp -R certs ~/.element-onpremise-config/

cp -R extra-config/* ~/.element-onpremise-config/

Now you have migrated to the new configuration directory structure. Going forward, your
configuration will stay in this directory.

In 1.0, we've also moved our container images to a new registry known as the EMS image store.
With this move, you now only have one username and token to keep up with as opposed to the
two credentials you had to manage pre-1.0.

To make the switch to the EMS Image Store Registry, you will need to contact Element and ask for
an EMS Image Store user name and token. Once you have gotten these, you will need to edit
secrets.yml in the configuration directory and remove these two lines:

and replace them with:

Further, if you've set the following lines in groupsync.yml, dimension.yml, and/or hookshot.yml,
you will need to remove them as they are no longer used:

Once you have taken care of addressing these changes, you'll be able to run the 1.0 installer.
Going forward, the syntax for running the installer will look like:

where the first parameter passed to install.sh is the config directory that contains your
configurations.

Switching to the EMS Image Store
Registry

registry_username: "myuser-2022"

registry_token: "mytoken"

ems_image_store_username: "username_from_element"

ems_image_store_token: "token_from_element"

ems_bridges_registry_username: <ems bridges registry token name>

ems_bridges_registry_password: <ems bridges registry token password>

Wrapping Up

bash install.sh ~/.element-onpremise-config

